Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 15(10): e0241052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33091068

RESUMO

Traditional pathogen surveillance methods for white-nose syndrome (WNS), the most serious threat to hibernating North American bats, focus on fungal presence where large congregations of hibernating bats occur. However, in the western USA, WNS-susceptible bat species rarely assemble in large numbers and known winter roosts are uncommon features. WNS increases arousal frequency and activity of infected bats during hibernation. Our objective was to explore the effectiveness of acoustic monitoring as a surveillance tool for WNS. We propose a non-invasive approach to model pre-WNS baseline activity rates for comparison with future acoustic data after WNS is suspected to occur. We investigated relationships among bat activity, ambient temperatures, and season prior to presence of WNS across forested sites of Montana, USA where WNS was not known to occur. We used acoustic monitors to collect bat activity and ambient temperature data year-round on 41 sites, 2011-2019. We detected a diverse bat community across managed (n = 4) and unmanaged (n = 37) forest sites and recorded over 5.37 million passes from bats, including 13 identified species. Bats were active year-round, but positive associations between average of the nightly temperatures by month and bat activity were strongest in spring and fall. From these data, we developed site-specific prediction models for bat activity to account for seasonal and annual temperature variation prior to known occurrence of WNS. These prediction models can be used to monitor changes in bat activity that may signal potential presence of WNS, such as greater than expected activity in winter, or less than expected activity during summer. We propose this model-based method for future monitoring efforts that could be used to trigger targeted sampling of individual bats or hibernacula for WNS, in areas where traditional disease surveillance approaches are logistically difficult to implement or because of human-wildlife transmission concerns from COVID-19.


Assuntos
Acústica , Doenças dos Animais/epidemiologia , Ascomicetos , Quirópteros/microbiologia , Quirópteros/fisiologia , Dermatomicoses/epidemiologia , Dermatomicoses/veterinária , Monitoramento Epidemiológico/veterinária , Vigilância de Evento Sentinela/veterinária , Doenças dos Animais/microbiologia , Animais , Animais Selvagens/microbiologia , Betacoronavirus , COVID-19 , Quirópteros/classificação , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Dermatomicoses/microbiologia , Florestas , Hibernação , Humanos , Modelos Estatísticos , Montana/epidemiologia , Pandemias , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Estações do Ano , Temperatura
2.
PLoS One ; 11(4): e0152888, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065016

RESUMO

Quantifying spatial and temporal variability in population trends is a critical aspect of successful management of imperiled species. We evaluated territory occupancy dynamics of northern spotted owls (Strix occidentalis caurina), California, USA, 1990-2014. The study area possessed two unique aspects. First, timber management has occurred for over 100 years, resulting in dramatically different forest successional and structural conditions compared to other areas. Second, the barred owl (Strix varia), an exotic congener known to exert significant negative effects on spotted owls, has not colonized the study area. We used a Bayesian dynamic multistate model to evaluate if territory occupancy of reproductive spotted owls has declined as in other study areas. The state-space approach for dynamic multistate modeling imputes the number of territories for each nesting state and allows for the estimation of longer-term trends in occupied or reproductive territories from longitudinal studies. The multistate approach accounts for different detection probabilities by nesting state (to account for either inherent differences in detection or for the use of different survey methods for different occupancy states) and reduces bias in state assignment. Estimated linear trends in the number of reproductive territories suggested an average loss of approximately one half territory per year (-0.55, 90% CRI: -0.76, -0.33), in one management block and a loss of 0.15 per year (-0.15, 90% CRI: -0.24, -0.07), in another management block during the 25 year observation period. Estimated trends in the third management block were also negative, but substantial uncertainty existed in the estimate (-0.09, 90% CRI: -0.35, 0.17). Our results indicate that the number of territories occupied by northern spotted owl pairs remained relatively constant over a 25 year period (-0.07, 90% CRI: -0.20, 0.05; -0.01, 90% CRI: -0.19, 0.16; -0.16, 90% CRI: -0.40, 0.06). However, we cannot exclude small-to-moderate declines or increases in paired territory numbers due to uncertainty in our estimates. Collectively, we conclude spotted owl pair populations on this landscape managed for commercial timber production appear to be more stable and do not show sharp year-over-year declines seen in both managed and unmanaged landscapes with substantial barred owl colonization and persistence. Continued monitoring of reproductive territories can determine whether recent declines continue or whether trends reverse as they have on four previous occasions. Experimental investigations to evaluate changes to spotted owl occupancy dynamics when barred owl populations are reduced or removed entirely can confirm the generality of this conclusion.


Assuntos
Comportamento Competitivo , Conservação dos Recursos Naturais , Modelos Teóricos , Estrigiformes/fisiologia , Animais , Teorema de Bayes , California , Ecossistema , Reprodução
3.
PLoS One ; 10(12): e0143241, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26637120

RESUMO

Riparian ecosystems integrate aquatic and terrestrial communities and often contain unique assemblages of flora and fauna. Retention of forested buffers along riparian habitats is a commonly employed practice to reduce potential negative effects of land use on aquatic systems. However, very few studies have examined long-term population and community responses to buffers, leading to considerable uncertainty about effectiveness of this practice for achieving conservation and management outcomes. We examined short- (1-2 years) and long-term (~10 years) avian community responses (occupancy and abundance) to riparian buffer prescriptions to clearcut logging silvicultural practices in the Pacific Northwest USA. We used a Before-After-Control-Impact experimental approach and temporally replicated point counts analyzed within a Bayesian framework. Our experimental design consisted of forested control sites with no harvest, sites with relatively narrow (~13 m) forested buffers on each side of the stream, and sites with wider (~30 m) and more variable width unharvested buffer. Buffer treatments exhibited a 31-44% increase in mean species richness in the post-harvest years, a pattern most evident 10 years post-harvest. Post-harvest, species turnover was much higher on both treatments (63-74%) relative to the controls (29%). We did not find evidence of local extinction for any species but found strong evidence (no overlap in 95% credible intervals) for an increase in site occupancy on both Narrow (short-term: 7%; long-term 29%) and Wide buffers (short-term: 21%; long-term 93%) relative to controls after harvest. We did not find a treatment effect on total avian abundance. When assessing relationships between buffer width and site level abundance of four riparian specialists, we did not find strong evidence of reduced abundance in Narrow or Wide buffers. Silviculture regulations in this region dictate average buffer widths on small and large permanent streams that range from ~22-25 m. Guidelines for this region are within the range of buffers included in our study, in which we observed no evidence for avian species loss or for a decline in species abundance (including riparian associated species).


Assuntos
Aves/fisiologia , Cruzamento , Conservação dos Recursos Naturais/métodos , Animais , Teorema de Bayes , Ecossistema , Noroeste dos Estados Unidos , Rios , Árvores
4.
PLoS One ; 10(11): e0142903, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26619010

RESUMO

Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions and objectives prior to sampling data and fitting models.


Assuntos
Distribuição Animal , Florestas , Modelos Estatísticos , Urodelos/fisiologia , Animais , Viés de Seleção
5.
PLoS One ; 8(3): e59900, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533659

RESUMO

As human demand for ecosystem products increases, management intervention may become more frequent after environmental disturbances. Evaluations of ecological responses to cumulative effects of management interventions and natural disturbances provide critical decision-support tools for managers who strive to balance environmental conservation and economic development. We conducted an experiment to evaluate the effects of salvage logging on avian community composition in lodgepole pine (Pinus contorta) forests affected by beetle outbreaks in Oregon, USA, 1996-1998. Treatments consisted of the removal of lodgepole pine snags only, and live trees were not harvested. We used a bayesian hierarchical model to quantify occupancy dynamics for 27 breeding species, while accounting for variation in the detection process. We examined how magnitude and precision of treatment effects varied when incorporating prior information from a separate intervention study that occurred in a similar ecological system. Regardless of which prior we evaluated, we found no evidence that the harvest treatment had a negative impact on species richness, with an estimated average of 0.2-2.2 more species in harvested stands than unharvested stands. Estimated average similarity between control and treatment stands ranged from 0.82-0.87 (1 indicating complete similarity between a pair of stands) and suggested that treatment stands did not contain novel assemblies of species responding to the harvesting prescription. Estimated treatment effects were positive for twenty-four (90%) of the species, although the credible intervals contained 0 in all cases. These results suggest that, unlike most post-fire salvage logging prescriptions, selective harvesting after beetle outbreaks may meet multiple management objectives, including the maintenance of avian community richness comparable to what is found in unharvested stands. Our results provide managers with prescription alternatives to respond to severe beetle outbreaks that continue to occur across extensive portions of the dry forests of western North America.


Assuntos
Teorema de Bayes , Modelos Teóricos , Árvores , Animais , Besouros , Ecossistema , Humanos , Pinus , Dinâmica Populacional , Estados Unidos
6.
PLoS One ; 7(8): e43290, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905249

RESUMO

BACKGROUND: Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. METHODOLOGY AND PRINCIPAL FINDINGS: We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35-80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. CONCLUSION AND SIGNIFICANCE: Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.


Assuntos
Agricultura Florestal/métodos , Árvores , Animais , Teorema de Bayes , Biodiversidade , Aves/fisiologia , Simulação por Computador , Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Estatísticos , Oregon , Traqueófitas , Árvores/fisiologia
7.
Ecology ; 92(12): 2299-309, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22352169

RESUMO

Identification of thresholds (state changes over a narrow range of values) is of basic and applied ecological interest. However, current methods of estimating thresholds in occupancy ignore variation in the observation process and may lead to erroneous conclusions about ecological relationships or to the development of inappropriate conservation targets. We present a model to estimate a threshold in occupancy while accounting for imperfect species detection. The threshold relationship is described by a break-point (threshold) and the change in slope (threshold effect). Imperfect species detection is incorporated by jointly modeling species occurrence and species detection. We used WinBUGS to evaluate the model through simulation and to fit the model to avian occurrence data for three species from 212 sites with two replicate surveys in 2007-2008. To determine if accounting for imperfect detection changed the inference about thresholds in avian occupancy in relation to habitat structure, we compared our model to results from a commonly used threshold model (segmented logistic regression). We fit this model in both frequentist and Bayesian modes of inference. Results of the simulation study showed that 95% posterior intervals contained the true value of the parameter in approximately 95% of the simulations. As expected, the simulations indicated more precise threshold and parameter estimates as sample size increased. In the empirical study, we found evidence for threshold relationships for four species by covariate combinations when ignoring species detection. However, when we included variation from the observation process, threshold relationships were not supported in three of those four cases (95% posterior intervals included 0). In general, confidence intervals for the threshold effect were larger when we accounted for species nondetection than when we ignored nondetection. This model can be extended to investigate abundance thresholds as a function of ecological and anthropogenic factors, as well as multispecies hierarchical models.


Assuntos
Aves , Ecologia/métodos , Modelos Estatísticos , Animais , Teorema de Bayes , Simulação por Computador , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA