Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992688

RESUMO

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Antígeno B7-H1/genética , Aurora Quinase A/genética , Aurora Quinase A/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Mitose , Interferons/genética
2.
Sci Transl Med ; 15(714): eadi7244, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37729434

RESUMO

Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)-histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63-rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.


Assuntos
Núcleo Celular , Oncogenes , Humanos , Animais , Camundongos , Ativação Transcricional , Proteínas Correpressoras , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fatores de Transcrição , Proteínas Supressoras de Tumor
3.
Cell Chem Biol ; 30(6): 618-631.e12, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290440

RESUMO

Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.


Assuntos
Transtornos Mieloproliferativos , Humanos , Mutação , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
4.
Cancer Discov ; 12(12): 2880-2905, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305736

RESUMO

Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE: Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.


Assuntos
Epigenoma , Glioma , Animais , Humanos , Mutação , Glioma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , DNA Helicases/genética , Proteínas Nucleares/genética
5.
Cancer Cell ; 40(9): 957-972.e10, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985342

RESUMO

Diffuse midline glioma (DMG) is a uniformly fatal pediatric cancer driven by oncohistones that do not readily lend themselves to drug development. To identify druggable targets for DMG, we conducted a genome-wide CRISPR screen that reveals a DMG selective dependency on the de novo pathway for pyrimidine biosynthesis. This metabolic vulnerability reflects an elevated rate of uridine/uracil degradation that depletes DMG cells of substrates for the alternate salvage pyrimidine biosynthesis pathway. A clinical stage inhibitor of DHODH (rate-limiting enzyme in the de novo pathway) diminishes uridine-5'-phosphate (UMP) pools, generates DNA damage, and induces apoptosis through suppression of replication forks-an "on-target" effect, as shown by uridine rescue. Matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy imaging demonstrates that this DHODH inhibitor (BAY2402234) accumulates in the brain at therapeutically relevant concentrations, suppresses de novo pyrimidine biosynthesis in vivo, and prolongs survival of mice bearing intracranial DMG xenografts, highlighting BAY2402234 as a promising therapy against DMGs.


Assuntos
Glioma , Pirimidinas , Animais , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Camundongos , Uridina/metabolismo , Uridina/farmacologia
6.
Cancer Res ; 82(2): 248-263, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810201

RESUMO

Neuroendocrine to nonneuroendocrine plasticity supports small cell lung cancer (SCLC) tumorigenesis and promotes immunogenicity. Approximately 20% to 25% of SCLCs harbor loss-of-function (LOF) NOTCH mutations. Previous studies demonstrated that NOTCH functions as a SCLC tumor suppressor, but can also drive nonneuroendocrine plasticity to support SCLC growth. Given the dual functionality of NOTCH, it is not understood why SCLCs select for LOF NOTCH mutations and how these mutations affect SCLC tumorigenesis. In a CRISPR-based genetically engineered mouse model of SCLC, genetic loss of Notch1 or Notch2 modestly accelerated SCLC tumorigenesis. Interestingly, Notch-mutant SCLCs still formed nonneuroendocrine subpopulations, and these Notch-independent, nonneuroendocrine subpopulations were driven by Runx2-mediated regulation of Rest. Notch2-mutant nonneuroendocrine cells highly express innate immune signaling genes including stimulator of interferon genes (STING) and were sensitive to STING agonists. This work identifies a Notch-independent mechanism to promote nonneuroendocrine plasticity and suggests that therapeutic approaches to activate STING could be selectively beneficial for SCLCs with NOTCH2 mutations. SIGNIFICANCE: A genetically engineered mouse model of NOTCH-mutant SCLC reveals that nonneuroendocrine plasticity persists in the absence of NOTCH, driven by a RUNX2-REST-dependent pathway and innate immune signaling.


Assuntos
Plasticidade Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Neoplasias Pulmonares/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Transdução de Sinais/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Mutação com Perda de Função , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Receptor Notch1/genética , Receptor Notch2/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Transfecção
7.
Nat Cell Biol ; 23(11): 1187-1198, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34737445

RESUMO

How cancer cells adapt to evade the therapeutic effects of drugs targeting oncogenic drivers is poorly understood. Here we report an epigenetic mechanism leading to the adaptive resistance of triple-negative breast cancer (TNBC) to fibroblast growth factor receptor (FGFR) inhibitors. Prolonged FGFR inhibition suppresses the function of BRG1-dependent chromatin remodelling, leading to an epigenetic state that derepresses YAP-associated enhancers. These chromatin changes induce the expression of several amino acid transporters, resulting in increased intracellular levels of specific amino acids that reactivate mTORC1. Consistent with this mechanism, addition of mTORC1 or YAP inhibitors to FGFR blockade synergistically attenuated the growth of TNBC patient-derived xenograft models. Collectively, these findings reveal a feedback loop involving an epigenetic state transition and metabolic reprogramming that leads to adaptive therapeutic resistance and provides potential therapeutic strategies to overcome this mechanism of resistance.


Assuntos
Antineoplásicos/farmacologia , Proteínas Cromossômicas não Histona/metabolismo , Resistencia a Medicamentos Antineoplásicos , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas de Sinalização YAP/metabolismo , Aminoácidos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Terapia de Alvo Molecular , Complexos Multiproteicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP/antagonistas & inibidores , Proteínas de Sinalização YAP/genética
8.
Mol Cancer Res ; 19(11): 1818-1830, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34285087

RESUMO

NUT carcinoma (NC), characterized most commonly by the BRD4-NUTM1 fusion, is a rare, aggressive variant of squamous carcinoma with no effective treatment. BRD4-NUT drives growth and maintains the poorly differentiated state of NC by activating pro-growth genes such as MYC, through the formation of massive, hyperacetylated, superenhancer-like domains termed megadomains. BRD4-NUT-mediated hyperacetylation of chromatin is facilitated by the chromatin-targeting tandem bromodomains of BRD4, combined with NUT, which recruits the histone acetyltransferase, p300. Here, we developed a high-throughput small-molecule screen to identify inhibitors of transcriptional activation by NUT. In this dCAS9-based GFP-reporter assay, the strongest hits were diverse histone deacetylase (HDAC) inhibitors. Two structurally unrelated HDAC inhibitors, panobinostat and the novel compound, IRBM6, both repressed growth and induced differentiation of NC cells in proportion to their inhibition of NUT transcriptional activity. These two compounds repressed transcription of megadomain-associated oncogenic genes, such as MYC and SOX2, while upregulating pro-differentiation, non-megadomain-associated genes, including JUN, FOS, and key cell-cycle regulators, such as CDKN1A. The transcriptional changes correlate with depletion of BRD4-NUT from megadomains, and redistribution of the p300/CBP-associated chromatin acetylation mark, H3K27ac, away from megadomains toward regular enhancer regions previously populated by H3K27ac. In NC xenograft models, we demonstrated that suppression of tumor growth by panobinostat was comparable with that of bromodomain inhibition, and when combined they improved both survival and growth suppression. IMPLICATIONS: The findings provide mechanistic and preclinical rationale for the use of HDAC inhibitors, alone or combined with other agents, in the treatment of NUT carcinoma.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular/genética , Detecção Precoce de Câncer/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos
9.
J Clin Invest ; 129(11): 5005-5019, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437130

RESUMO

The interleukin-3 receptor α subunit, CD123, is expressed in many hematologic malignancies including acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN). Tagraxofusp (SL-401) is a CD123-targeted therapy consisting of interleukin-3 fused to a truncated diphtheria toxin payload. Factors influencing response to tagraxofusp other than CD123 expression are largely unknown. We interrogated tagraxofusp resistance in patients and experimental models and found that it was not associated with CD123 loss. Rather, resistant AML and BPDCN cells frequently acquired deficiencies in the diphthamide synthesis pathway, impairing tagraxofusp's ability to ADP-ribosylate cellular targets. Expression of DPH1, encoding a diphthamide pathway enzyme, was reduced by DNA CpG methylation in resistant cells. Treatment with the DNA methyltransferase inhibitor azacitidine restored DPH1 expression and tagraxofusp sensitivity. We also developed a drug-dependent ADP-ribosylation assay in primary cells that correlated with tagraxofusp activity and may represent an additional novel biomarker. As predicted by these results and our observation that resistance also increased mitochondrial apoptotic priming, we found that the combination of tagraxofusp and azacitidine was effective in patient-derived xenografts treated in vivo. These data have important implications for clinical use of tagraxofusp and led to a phase 1 study combining tagraxofusp and azacitidine in myeloid malignancies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Dendríticas/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias Hematológicas , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda , Proteínas de Neoplasias/metabolismo , Animais , Azacitidina/farmacologia , Linhagem Celular Tumoral , Metilação de DNA , Células Dendríticas/patologia , Feminino , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Nus , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Discov ; 9(7): 944-961, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31040105

RESUMO

The extraordinary activity of high-dose cyclophosphamide against some high-grade lymphomas was described nearly 60 years ago. Here we address mechanisms that mediate cyclophosphamide activity in bona fide human double-hit lymphoma. We show that antibody resistance within the bone marrow (BM) is not present upon early engraftment but develops during lymphoma progression. This resistance required a high tumor:macrophage ratio, was recapitulated in spleen by partial macrophage depletion, and was overcome by multiple, high-dose alkylating agents. Cyclophosphamide induced endoplasmic reticulum (ER) stress in BM-resident lymphoma cells in vivo that resulted in ATF4-mediated paracrine secretion of VEGFA, massive macrophage infiltration, and clearance of alemtuzumab-opsonized cells. BM macrophages isolated after cyclophosphamide treatment had increased phagocytic capacity that was reversed by VEGFA blockade or SYK inhibition. Single-cell RNA sequencing of these macrophages identified a "super-phagocytic" subset that expressed CD36/FCGR4. Together, these findings define a novel mechanism through which high-dose alkylating agents promote macrophage-dependent lymphoma clearance. SIGNIFICANCE: mAbs are effective against only a small subset of cancers. Herein, we recapitulate compartment-specific antibody resistance and define an ER stress-dependent mechanism induced by high-dose alkylating agents that promotes phagocytosis of opsonized tumor cells. This approach induces synergistic effects with mAbs and merits testing across additional tumor types.See related commentary by Duval and De Palma, p. 834.This article is highlighted in the In This Issue feature, p. 813.


Assuntos
Alemtuzumab/metabolismo , Alquilantes/administração & dosagem , Ciclofosfamida/administração & dosagem , Linfoma de Células B/tratamento farmacológico , Animais , Anticorpos Monoclonais/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PLoS One ; 13(7): e0200611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30036367

RESUMO

BACKGROUND: Magnetic Resonance Imaging (MRI) relies on optimal scanning parameters to achieve maximal signal-to-noise ratio (SNR) and high contrast-to-noise ratio (CNR) between tissues resulting in high quality images. The optimization of such parameters is often laborious, time consuming, and user-dependent, making harmonization of imaging parameters a difficult task. In this report, we aim to develop and validate a computer simulation technique that can reliably provide "optimal in vivo scanning parameters" ready to be used for in vivo evaluation of disease models. METHODS: A glioblastoma murine model was investigated using several MRI imaging methods. Such MRI methods underwent a simulated and an in vivo scanning parameter optimization in pre- and post-contrast conditions that involved the investigation of tumor, brain parenchyma and cerebrospinal fluid (CSF) CNR values in addition to the time relaxation values of the related tissues. The CNR tissues information were analyzed and the derived scanning parameters compared in order to validate the simulated methodology as a reliable technique for "optimal in vivo scanning parameters" estimation. RESULTS: The CNRs and the related scanning parameters were better correlated when spin-echo-based sequences were used rather than the gradient-echo-based sequences due to augmented inhomogeneity artifacts affecting the latter methods. "Optimal in vivo scanning parameters" were generated successfully by the simulations after initial scanning parameter adjustments that conformed to some of the parameters derived from the in vivo experiment. CONCLUSION: Scanning parameter optimization using the computer simulation was shown to be a valid surrogate to the in vivo approach in a glioblastoma murine model yielding in a better delineation and differentiation of the tumor from the contralateral hemisphere. In addition to drastically reducing the time invested in choosing optimal scanning parameters when compared to an in vivo approach, this simulation program could also be used to harmonize MRI acquisition parameters across scanners from different vendors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Simulação por Computador , Glioblastoma/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Linhagem Celular Tumoral , Líquido Cefalorraquidiano/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Feminino , Gadolínio DTPA/administração & dosagem , Humanos , Camundongos , Razão Sinal-Ruído
12.
Bioorg Med Chem Lett ; 27(10): 2087-2093, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389149

RESUMO

The voltage-gated sodium channel Nav1.7 is a genetically validated target for the treatment of pain with gain-of-function mutations in man eliciting a variety of painful disorders and loss-of-function mutations affording insensitivity to pain. Unfortunately, drugs thought to garner efficacy via Nav1 inhibition have undesirable side effect profiles due to their lack of selectivity over channel isoforms. Herein we report the discovery of a novel series of orally bioavailable arylsulfonamide Nav1.7 inhibitors with high levels of selectivity over Nav1.5, the Nav isoform responsible for cardiovascular side effects, through judicious use of parallel medicinal chemistry and physicochemical property optimization. This effort produced inhibitors such as compound 5 with excellent potency, selectivity, behavioral efficacy in a rodent pain model, and efficacy in a mouse itch model suggestive of target modulation.


Assuntos
Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Administração Oral , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Concentração Inibidora 50 , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nitrogênio/química , Dor/tratamento farmacológico , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
13.
Cancer Immunol Res ; 4(2): 124-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26546453

RESUMO

Inhibition of immune checkpoints, including cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and its ligand PD-L1, has demonstrated exciting and durable remissions across a spectrum of malignancies. Combinatorial regimens blocking complementary immune checkpoints further enhance the therapeutic benefit. The activity of these agents for patients with glioblastoma, a generally lethal primary brain tumor associated with significant systemic and microenvironmental immunosuppression, is not known. We therefore systematically evaluated the antitumor efficacy of murine antibodies targeting a broad panel of immune checkpoint molecules, including CTLA-4, PD-1, PD-L1, and PD-L2 when administered as single-agent therapy and in combinatorial regimens against an orthotopic, immunocompetent murine glioblastoma model. In these experiments, we observed long-term tumor-free survival following single-agent anti-PD-1, anti-PD-L1, or anti-CTLA-4 therapy in 50%, 20%, and 15% of treated animals, respectively. Combination therapy of anti-CTLA-4 plus anti-PD-1 cured 75% of the animals, even against advanced, later-stage tumors. In long-term survivors, tumor growth was not seen upon intracranial tumor rechallenge, suggesting that tumor-specific immune memory responses were generated. Inhibitory immune checkpoint blockade quantitatively increased activated CD8(+) and natural killer cells and decreased suppressive immune cells in the tumor microenvironment and draining cervical lymph nodes. Our results support prioritizing the clinical evaluation of PD-1, PD-L1, and CTLA-4 single-agent targeted therapy as well as combination therapy of CTLA-4 plus PD-1 blockade for patients with glioblastoma.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunomodulação/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Imunidade/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Carga Tumoral/efeitos dos fármacos
14.
J Med Chem ; 57(13): 5800-16, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24914455

RESUMO

We have identified several series of small molecule inhibitors of TrkA with unique binding modes. The starting leads were chosen to maximize the structural and binding mode diversity derived from a high throughput screen of our internal compound collection. These leads were optimized for potency and selectivity employing a structure based drug design approach adhering to the principles of ligand efficiency to maximize binding affinity without overly relying on lipophilic interactions. This endeavor resulted in the identification of several small molecule pan-Trk inhibitor series that exhibit high selectivity for TrkA/B/C versus a diverse panel of kinases. We have also demonstrated efficacy in both inflammatory and neuropathic pain models upon oral dosing. Herein we describe the identification process, hit-to-lead progression, and binding profiles of these selective pan-Trk kinase inhibitors.


Assuntos
Dor Crônica/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Receptor trkA/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Indóis/química , Indóis/farmacocinética , Ligantes , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Ratos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacocinética , Ureia/análogos & derivados , Ureia/química , Ureia/farmacocinética
15.
Bioorg Med Chem Lett ; 20(14): 4065-8, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20547452

RESUMO

A series of HIV-1 protease inhibitors containing an epsilon substituted lysinol backbone was synthesized. Two novel synthetic routes using N-boc-L-glutamic acid alpha-benzyl ester and 2,6-diaminopimelic acid were developed. Incorporation of this epsilon substituent enabled access to the S2 pocket of the enzyme, affording high potency inhibitors. Modeling studies and synthetic efforts suggest the potency increase is due to both conformational bias and van der Waals interactions with the S2 pocket.


Assuntos
Inibidores da Protease de HIV/farmacologia , Lisina/análogos & derivados , Inibidores da Protease de HIV/química , Modelos Moleculares , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 19(11): 2977-80, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19409780

RESUMO

We have developed a novel series of heteroaromatic BACE-1 inhibitors. These inhibitors interact with the enzyme in a unique fashion that allows for potent binding in a non-traditional paradigm. In addition to the elucidation of their binding profile, we have discovered a pH dependent effect on the binding affinity as a result of the intrinsic pK(a) of these inhibitors and the pH of the BACE-1 enzyme binding assay.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/química , Compostos Heterocíclicos/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Concentração de Íons de Hidrogênio , Ligação Proteica , Relação Estrutura-Atividade
17.
J Biol Chem ; 280(18): 17792-7, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15737955

RESUMO

Extracellular deposits of aggregated amyloid-beta (Abeta) peptides are a hallmark of Alzheimer disease; thus, inhibition of Abeta production and/or aggregation is an appealing strategy to thwart the onset and progression of this disease. The release of Abeta requires processing of the amyloid precursor protein (APP) by both beta- and gamma-secretase. Using an assay that incorporates full-length recombinant APP as a substrate for beta-secretase (BACE), we have identified a series of compounds that inhibit APP processing, but do not affect the cleavage of peptide substrates by BACE1. These molecules also inhibit the processing of APP and Abeta by BACE2 and selectively inhibit the production of Abeta(42) species by gamma-secretase in assays using CTF99. The compounds bind directly to APP, likely within the Abeta domain, and therefore, unlike previously described inhibitors of the secretase enzymes, their mechanism of action is mediated through APP. These studies demonstrate that APP binding agents can affect its processing through multiple pathways, providing proof of concept for novel strategies aimed at selectively modulating Abeta production.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Endopeptidases , Células HeLa , Humanos , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA