Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Elife ; 92020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32773035

RESUMO

The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA-Seq , Receptores Odorantes/genética , Receptores Odorantes/fisiologia , Análise de Célula Única
2.
Science ; 357(6355): 1058, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28883075
3.
RNA Biol ; 14(2): 146-155, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27911186

RESUMO

NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Estabilidade de RNA , Espermatogênese/genética , Testículo/fisiologia , Animais , Diferenciação Celular/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Masculino , Degradação do RNAm Mediada por Códon sem Sentido , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Especificidade por Substrato
4.
Cell ; 165(2): 382-95, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040500

RESUMO

Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.


Assuntos
Desenvolvimento Embrionário , Genes Duplicados , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Evolução Molecular , Gametogênese , Células HeLa , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA