Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Struct Biol ; 216(2): 108095, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723875

RESUMO

Single particle analysis from cryogenic transmission electron microscopy (cryo-EM) is particularly attractive for complexes for which structure prediction remains intractable, such as antibody-antigen complexes. Here we obtain the detailed structure of a particularly difficult complex between human epidermal growth factor receptor 2 (HER2) and the antigen-binding fragments from two distinct therapeutic antibodies binding to distant parts of the flexible HER2, pertuzumab and trastuzumab (HTP). We highlight the strengths and limitations of current data processing software in dealing with various kinds of heterogeneities, particularly continuous conformational heterogeneity, and in describing the motions that can be extracted from our dataset. Our HTP structure provides a more detailed view than the one previously available for this ternary complex. This allowed us to pinpoint a previously overlooked loop in domain IV that may be involved both in binding of trastuzumab and in HER2 dimerization. This finding may contribute to explain the synergistic anticancer effect of the two antibodies. We further propose that the flexibility of the HTP complex, beyond the difficulties it causes for cryo-EM analysis, actually reflects regulation of HER2 signaling and its inhibition by therapeutic antibodies. Notably we obtain our best data with ultra-thin continuous carbon grids, showing that with current cameras their use to alleviate particle misdistribution is compatible with a protein complex of only 162 kDa. Perhaps most importantly, we provide here a dataset for such a smallish protein complex for further development of software accounting for continuous conformational heterogeneity in cryo-EM images.

2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542345

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) has been shown to be effective in defining the structure of macromolecules, including protein complexes. Complexes adopt different conformations and compositions to perform their biological functions. In cryo-EM, the protein complexes are observed in solution, enabling the recording of images of the protein in multiple conformations. Various methods exist for capturing the conformational variability through analysis of cryo-EM data. Here, we analyzed the conformational variability in the hexameric AAA + ATPase p97, a complex with a six-fold rotational symmetric core surrounded by six flexible N-domains. We compared the performance of discrete classification methods with our recently developed method, MDSPACE, which uses 3D-to-2D flexible fitting of an atomic structure to images based on molecular dynamics (MD) simulations. Our analysis detected a novel conformation adopted by approximately 2% of the particles in the dataset and determined that the N-domains of p97 sway by up to 60° around a central position. This study demonstrates the application of MDSPACE in analyzing the continuous conformational changes in partially symmetrical protein complexes, systems notoriously difficult to analyze due to the alignment errors caused by their partial symmetry.


Assuntos
Adenosina Trifosfatases , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Microscopia Crioeletrônica/métodos , Adenosina Trifosfatases/metabolismo
3.
Sci Rep ; 13(1): 10596, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391578

RESUMO

Cryo electron tomography (cryo-ET) allows observing macromolecular complexes in their native environment. The common routine of subtomogram averaging (STA) allows obtaining the three-dimensional (3D) structure of abundant macromolecular complexes, and can be coupled with discrete classification to reveal conformational heterogeneity of the sample. However, the number of complexes extracted from cryo-ET data is usually small, which restricts the discrete-classification results to a small number of enough populated states and, thus, results in a largely incomplete conformational landscape. Alternative approaches are currently being investigated to explore the continuity of the conformational landscapes that in situ cryo-ET studies could provide. In this article, we present MDTOMO, a method for analyzing continuous conformational variability in cryo-ET subtomograms based on Molecular Dynamics (MD) simulations. MDTOMO allows obtaining an atomic-scale model of conformational variability and the corresponding free-energy landscape, from a given set of cryo-ET subtomograms. The article presents the performance of MDTOMO on a synthetic ABC exporter dataset and an in situ SARS-CoV-2 spike dataset. MDTOMO allows analyzing dynamic properties of molecular complexes to understand their biological functions, which could also be useful for structure-based drug discovery.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , Elétrons , SARS-CoV-2 , Descoberta de Drogas
4.
J Mol Biol ; 435(9): 167951, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638910

RESUMO

This article presents an original approach for extracting atomic-resolution landscapes of continuous conformational variability of biomolecular complexes from cryo electron microscopy (cryo-EM) single particle images. This approach is based on a new 3D-to-2D flexible fitting method, which uses molecular dynamics (MD) simulation and is embedded in an iterative conformational-landscape refinement scheme. This new approach is referred to as MDSPACE, which stands for Molecular Dynamics simulation for Single Particle Analysis of Continuous Conformational hEterogeneity. The article describes the MDSPACE approach and shows its performance using synthetic and experimental datasets.


Assuntos
Simulação de Dinâmica Molecular , Imagem Individual de Molécula , Microscopia Crioeletrônica/métodos , Conformação Proteica
5.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203192

RESUMO

Cryo electron microscopy (cryo-EM) instrumentation allows obtaining 3D reconstruction of the structure of biomolecular complexes in vitro (purified complexes studied by single particle analysis) and in situ (complexes studied in cells by cryo electron tomography). Standard cryo-EM approaches allow high-resolution reconstruction of only a few conformational states of a molecular complex, as they rely on data classification into a given number of classes to increase the resolution of the reconstruction from the most populated classes while discarding all other classes. Such discrete classification approaches result in a partial picture of the full conformational variability of the complex, due to continuous conformational transitions with many, uncountable intermediate states. In this article, we present the software with a user-friendly graphical interface for running two recently introduced methods, namely, MDSPACE and MDTOMO, to obtain continuous conformational landscapes of biomolecules by analyzing in vitro and in situ cryo-EM data (single particle images and subtomograms) based on molecular dynamics simulations of an available atomic model of one of the conformations. The MDSPACE and MDTOMO software is part of the open-source ContinuousFlex software package (starting from version 3.4.2 of ContinuousFlex), which can be run as a plugin of the Scipion software package (version 3.1 and later), broadly used in the cryo-EM field.


Assuntos
Tomografia com Microscopia Eletrônica , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Conformação Molecular , Software
6.
J Struct Biol ; 214(4): 107906, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244611

RESUMO

ContinuousFlex is a user-friendly open-source software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET) data. In 2019, ContinuousFlex became available as a plugin for Scipion, an image processing software package extensively used in the cryo-EM field. Currently, ContinuousFlex contains software for running (1) recently published methods HEMNMA-3D, TomoFlow, and NMMD; (2) earlier published methods HEMNMA and StructMap; and (3) methods for simulating cryo-EM and cryo-ET data with conformational variability and methods for data preprocessing. It also includes external software for molecular dynamics simulation (GENESIS) and normal mode analysis (ElNemo), used in some of the mentioned methods. The HEMNMA software has been presented in the past, but not the software of other methods. Besides, ContinuousFlex currently also offers a deep learning extension of HEMNMA, named DeepHEMNMA. In this article, we review these methods in the context of the ContinuousFlex package, developed to facilitate their use by the community.


Assuntos
Tomografia , Microscopia Crioeletrônica
7.
BMC Mol Cell Biol ; 23(1): 39, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088301

RESUMO

BACKGROUND: The AAA + ATPase p97 is an essential unfoldase/segragase involved in a multitude of cellular processes. It functions as a molecular machine critical for protein homeostasis, homotypic membrane fusion events and organelle biogenesis during mitosis in which it acts in concert with cofactors p47 and p37. Cofactors assist p97 in extracting and unfolding protein substrates through ATP hydrolysis. In contrast to other p97's cofactors, p37 uniquely increases the ATPase activity of p97. Disease-causing mutations in p97, including mutations that cause neurodegenerative diseases, increase cofactor association with its N-domain, ATPase activity and improper substrate processing. Upregulation of p97 has also been observed in various cancers. This study aims towards the characterization of the protein-protein interaction between p97 and p37 at the atomic level. We defined the interacting residues in p97 and p37. The knowledge will facilitate the design of unique small molecules inhibiting this interaction with insights into cancer therapy and drug design. RESULTS: The homology model of human p37 UBX domain was built from the X-ray crystal structure of p47 C-terminus from rat (PDB code:1S3S, G) as a template and assessed by model validation analysis. According to the HDOCK, HAWKDOCK, MM-GBSA binding free energy calculations and Arpeggio, we found that there are several hydrophobic and two hydrogen-bonding interactions between p37 UBX and p97 N-D1 domain. Residues of p37 UBX predicted to be involved in the interactions with p97 N-D1 domain interface are highly conserved among UBX cofactors. CONCLUSION: This study provides a reliable structural insight into the p37-p97 complex binding sites at the atomic level though molecular docking coupled with molecular dynamics simulation. This can guide the rational design of small molecule drugs for inhibiting mutant p97 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases , Simulação de Dinâmica Molecular , Proteína com Valosina/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Ratos , Proteína com Valosina/metabolismo
8.
Front Mol Biosci ; 9: 965645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158571

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) is a technique for biomolecular structure reconstruction from vitrified samples containing many copies of a biomolecular complex (known as single particles) at random unknown 3D orientations and positions. Cryo-EM allows reconstructing multiple conformations of the complexes from images of the same sample, which usually requires many rounds of 2D and 3D classifications to disentangle and interpret the combined conformational, orientational, and translational heterogeneity. The elucidation of different conformations is the key to understand molecular mechanisms behind the biological functions of the complexes and the key to novel drug discovery. Continuous conformational heterogeneity, due to gradual conformational transitions giving raise to many intermediate conformational states of the complexes, is both an obstacle for high-resolution 3D reconstruction of the conformational states and an opportunity to obtain information about multiple coexisting conformational states at once. HEMNMA method, specifically developed for analyzing continuous conformational heterogeneity in cryo-EM, determines the conformation, orientation, and position of the complex in each single particle image by image analysis using normal modes (the motion directions simulated for a given atomic structure or EM map), which in turn allows determining the full conformational space of the complex but at the price of high computational cost. In this article, we present a new method, referred to as DeepHEMNMA, which speeds up HEMNMA by combining it with a residual neural network (ResNet) based deep learning approach. The performance of DeepHEMNMA is shown using synthetic and experimental single particle images.

9.
J Mol Biol ; 434(7): 167483, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35150654

RESUMO

Atomic models of cryo electron microscopy (cryo-EM) maps of biomolecular conformations are often obtained by flexible fitting of the maps with available atomic structures of other conformations (e.g., obtained by X-ray crystallography). This article presents a new flexible fitting method, NMMD, which combines normal mode analysis (NMA) and molecular dynamics simulation (MD). Given an atomic structure and a cryo-EM map to fit, NMMD simultaneously estimates global atomic displacements based on NMA and local displacements based on MD. NMMD was implemented by modifying EMfit, a flexible fitting method using MD only, in GENESIS 1.4. As EMfit, NMMD can be run with replica exchange umbrella sampling procedure. The new method was tested using a variety of EM maps (synthetic and experimental, with different noise levels and resolutions). The results of the tests show that adding normal modes to MD-based fitting makes the fitting faster (40% in average) and, in the majority of cases, more accurate.


Assuntos
Simulação de Dinâmica Molecular , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Conformação Molecular , Conformação Proteica
10.
J Mol Biol ; 434(2): 167381, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848215

RESUMO

Cryogenic Electron Tomography (cryo-ET) allows structural and dynamics studies of macromolecules in situ. Averaging different copies of imaged macromolecules is commonly used to obtain their structure at higher resolution and discrete classification to analyze their dynamics. Instrumental and data processing developments are progressively equipping cryo-ET studies with the ability to escape the trap of classification into a complete continuous conformational variability analysis. In this work, we propose TomoFlow, a method for analyzing macromolecular continuous conformational variability in cryo-ET subtomograms based on a three-dimensional dense optical flow (OF) approach. The resultant lower-dimensional conformational space allows generating movies of macromolecular motion and obtaining subtomogram averages by grouping conformationally similar subtomograms. The animations and the subtomogram group averages reveal accurate trajectories of macromolecular motion based on a novel mathematical model that makes use of OF properties. This paper describes TomoFlow with tests on simulated datasets generated using different techniques, namely Normal Mode Analysis and Molecular Dynamics Simulation. It also shows an application of TomoFlow on a dataset of nucleosomes in situ, which provided promising results coherent with previous findings using the same dataset but without imposing any prior knowledge on the analysis of the conformational variability. The method is discussed with its potential uses and limitations.


Assuntos
Substâncias Macromoleculares/química , Conformação Molecular , Fluxo Óptico , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Simulação de Dinâmica Molecular , Nucleossomos/química
11.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684805

RESUMO

Xmipp is an open-source software package consisting of multiple programs for processing data originating from electron microscopy and electron tomography, designed and managed by the Biocomputing Unit of the Spanish National Center for Biotechnology, although with contributions from many other developers over the world. During its 25 years of existence, Xmipp underwent multiple changes and updates. While there were many publications related to new programs and functionality added to Xmipp, there is no single publication on the Xmipp as a package since 2013. In this article, we give an overview of the changes and new work since 2013, describe technologies and techniques used during the development, and take a peek at the future of the package.

12.
Front Mol Biosci ; 8: 663121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095222

RESUMO

Cryogenic electron tomography (cryo-ET) allows structural determination of biomolecules in their native environment (in situ). Its potential of providing information on the dynamics of macromolecular complexes in cells is still largely unexploited, due to the challenges of the data analysis. The crowded cell environment and continuous conformational changes of complexes make difficult disentangling the data heterogeneity. We present HEMNMA-3D, which is, to the best of our knowledge, the first method for analyzing cryo electron subtomograms in terms of continuous conformational changes of complexes. HEMNMA-3D uses a combination of elastic and rigid-body 3D-to-3D iterative alignments of a flexible 3D reference (atomic structure or electron microscopy density map) to match the conformation, orientation, and position of the complex in each subtomogram. The elastic matching combines molecular mechanics simulation (Normal Mode Analysis of the 3D reference) and experimental, subtomogram data analysis. The rigid-body alignment includes compensation for the missing wedge, due to the limited tilt angle of cryo-ET. The conformational parameters (amplitudes of normal modes) of the complexes in subtomograms obtained through the alignment are processed to visualize the distribution of conformations in a space of lower dimension (typically, 2D or 3D) referred to as space of conformations. This allows a visually interpretable insight into the dynamics of the complexes, by calculating 3D averages of subtomograms with similar conformations from selected (densest) regions and by recording movies of the 3D reference's displacement along selected trajectories through the densest regions. We describe HEMNMA-3D and show its validation using synthetic datasets. We apply HEMNMA-3D to an experimental dataset describing in situ nucleosome conformational variability. HEMNMA-3D software is available freely (open-source) as part of ContinuousFlex plugin of Scipion V3.0 (http://scipion.i2pc.es).

13.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287103

RESUMO

The effects of insulin on the bioenergetic and thermogenic capacity of brown adipocyte mitochondria were investigated by focusing on key mitochondrial proteins. Two-month-old male Wistar rats were treated acutely or chronically with a low or high dose of insulin. Acute low insulin dose increased expression of all electron transport chain complexes and complex IV activity, whereas high dose increased complex II expression. Chronic low insulin dose decreased complex I and cyt c expression while increasing complex II and IV expression and complex IV activity. Chronic high insulin dose decreased complex II, III, cyt c, and increased complex IV expression. Uncoupling protein (UCP) 1 expression was decreased after acute high insulin but increased following chronic insulin treatment. ATP synthase expression was increased after acute and decreased after chronic insulin treatment. Only a high dose of insulin increased ATP synthase activity in acute and decreased it in chronic treatment. ATPase inhibitory factor protein expression was increased in all treated groups. Confocal microscopy showed that key mitochondrial proteins colocalize differently in different mitochondria within a single brown adipocyte, indicating mitochondrial mosaicism. These results suggest that insulin modulates the bioenergetic and thermogenic capacity of rat brown adipocytes in vivo by modulating mitochondrial mosaicism.


Assuntos
Adipócitos Marrons/metabolismo , Metabolismo Energético , Insulina/metabolismo , Mitocôndrias/metabolismo , Termogênese , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Biomarcadores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Expressão Gênica , Insulina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mosaicismo , Ratos , Termogênese/efeitos dos fármacos , Termogênese/genética
14.
Cell Mol Life Sci ; 77(5): 859-874, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31960115

RESUMO

Phosphatidylethanolamine-binding protein 1 (PEBP1), a small 21 kDa protein, is implicated in several key processes of the living cell. The deregulation of PEBP1, especially its downregulation, leads to major diseases such as cancer and Alzheimer's disease. PEBP1 was found to interact with numerous proteins, especially kinases and GTPases, generally inhibiting their activity. To understand the basic functionality of this amazing small protein, we have considered several known processes that it modulates and we have discussed the role of each molecular target in these processes. Here, we propose that cortical actin organization, associated with membrane changes, is involved in the majority of the processes modulated by PEBP1. Furthermore, based on recent data, we summarize some key PEBP1-interacting proteins, and we report their respective functions and focus on their relationships with actin organization. We suggest that, depending on the cell status and environment, PEBP1 is an organizer of the actin-membrane composite material.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Sequência de Aminoácidos , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
15.
Protein Sci ; 29(1): 223-236, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693263

RESUMO

Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) method was introduced in 2014. HEMNMA computes normal modes of a reference model (an atomic structure or an electron microscopy map) of a molecular complex and uses this model and its normal modes to analyze single-particle images of the complex to obtain information on its continuous conformational changes, by determining the full distribution of conformational variability from the images. An advantage of HEMNMA is a simultaneous determination of all parameters of each image (particle conformation, orientation, and shift) through their iterative optimization, which allows applications of HEMNMA even when the effects of conformational changes dominate those of orientational changes. HEMNMA was first implemented in Xmipp and was using MATLAB for statistical analysis of obtained conformational distributions and for fitting of underlying trajectories of conformational changes. A HEMNMA implementation independent of MATLAB is now available as part of a plugin of Scipion V2.0 (http://scipion.i2pc.es). This plugin, named ContinuousFlex, can be installed by following the instructions at https://pypi.org/project/scipion-em-continuousflex. In this article, we present this new HEMNMA software, which is user-friendly, totally free, and open-source. STATEMENT FOR A BROADER AUDIENCE: This article presents Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) software that allows analyzing single-particle images of a complex to obtain information on continuous conformational changes of the complex, by determining the full distribution of conformational variability from the images. The HEMNMA software is user-friendly, totally free, open-source, and available as part of ContinuousFlex plugin (https://pypi.org/project/scipion-em-continuousflex) of Scipion V2.0 (http://scipion.i2pc.es).


Assuntos
Biologia Computacional/métodos , Proteínas/química , Algoritmos , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica , Imagem Individual de Molécula , Navegador
16.
Bioinformatics ; 35(14): 2427-2433, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30500892

RESUMO

MOTIVATION: Cryo electron microscopy (EM) is currently one of the main tools to reveal the structural information of biological macromolecules. The re-construction of three-dimensional (3D) maps is typically carried out following an iterative process that requires an initial estimation of the 3D map to be refined in subsequent steps. Therefore, its determination is key in the quality of the final results, and there are cases in which it is still an open issue in single particle analysis (SPA). Small angle X-ray scattering (SAXS) is a well-known technique applied to structural biology. It is useful from small nanostructures up to macromolecular ensembles for its ability to obtain low resolution information of the biological sample measuring its X-ray scattering curve. These curves, together with further analysis, are able to yield information on the sizes, shapes and structures of the analyzed particles. RESULTS: In this paper, we show how the low resolution structural information revealed by SAXS is very useful for the validation of EM initial 3D models in SPA, helping the following refinement process to obtain more accurate 3D structures. For this purpose, we approximate the initial map by pseudo-atoms and predict the SAXS curve expected for this pseudo-atomic structure. The match between the predicted and experimental SAXS curves is considered as a good sign of the correctness of the EM initial map. AVAILABILITY AND IMPLEMENTATION: The algorithm is freely available as part of the Scipion 1.2 software at http://scipion.i2pc.es/.


Assuntos
Microscopia Crioeletrônica , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
18.
J Struct Biol ; 204(2): 291-300, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114512

RESUMO

The recent successes of cryo-electron microscopy fostered great expectation of solving many new and previously recalcitrant biomolecular structures. However, it also brings with it the danger of compromising the validity of the outcomes if not done properly. The Map Challenge is a first step in assessing the state of the art and to shape future developments in data processing. The organizers presented seven cases for single particle reconstruction, and 27 members of the community responded with 66 submissions. Seven groups analyzed these submissions, resulting in several assessment reports, summarized here. We devised a range of analyses to evaluate the submitted maps, including visual impressions, Fourier shell correlation, pairwise similarity and interpretation through modeling. Unfortunately, we did not find strong trends. We ascribe this to the complexity of the challenge, dealing with multiple cases, software packages and processing approaches. This puts the user in the spotlight, where his/her choices becomes the determinant of map quality. The future focus should therefore be on promulgating best practices and encapsulating these in the software. Such practices include adherence to validation principles, most notably the processing of independent sets, proper resolution-limited alignment, appropriate masking and map sharpening. We consider the Map Challenge to be a highly valuable exercise that should be repeated frequently or on an ongoing basis.


Assuntos
Microscopia Crioeletrônica/métodos , Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Conformação Proteica , Software
19.
J Struct Biol ; 204(2): 344-350, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036578

RESUMO

This article presents a methodology to assess a set of density maps, as used in the Blind Assessment Phase of the 2015/2016 Map Challenge (EMDataBank Validation Challenges). The synthetic and experimental cryo-electron microscopy (cryo-EM) density maps obtained by different single particle analysis protocols and by different participants, submitted in the Challenge Phase for assessment, were analyzed with this methodology and the obtained results are presented and discussed here. The goal of using such a methodology was to blindly identify the density maps with globally similar structural information, meaning the maps with the structural information mostly "reproduced" by different protocols. To this end, the density maps are "coarsened" using Gaussian-based approximations, with the same input approximation parameters for all maps of the target biological complex. The approximated maps are then represented in a common reduced-dimension (here, 3D) space of their correlation-coefficient-based distances, in which close maps mean similar maps. The distance analysis allows identifying maps with the most "reproduced" structural information by different protocols. The obtained results are also discussed taking into account the detailed information about the protocols that has been released after the end of the Blind Assessment Phase.


Assuntos
Microscopia Crioeletrônica/métodos , Distribuição Normal , Conformação Proteica
20.
J Synchrotron Radiat ; 25(Pt 4): 1010-1021, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979162

RESUMO

Three-dimensional (3D) structures of biomolecules provide insight into their functions. Using X-ray free-electron laser (XFEL) scattering experiments, it was possible to observe biomolecules that are difficult to crystallize, under conditions that are similar to their natural environment. However, resolving 3D structure from XFEL data is not without its challenges. For example, strong beam intensity is required to obtain sufficient diffraction signal and the beam incidence angles to the molecule need to be estimated for diffraction patterns with significant noise. Therefore, it is important to quantitatively assess how the experimental conditions such as the amount of data and their quality affect the expected resolution of the resulting 3D models. In this study, as an example, the restoration of 3D structure of ribosome from two-dimensional diffraction patterns created by simulation is shown. Tests are performed using the diffraction patterns simulated for different beam intensities and using different numbers of these patterns. Guidelines for selecting parameters for slice-matching 3D reconstruction procedures are established. Also, the minimum requirements for XFEL experimental conditions to obtain diffraction patterns for reconstructing molecular structures to a high-resolution of a few nanometers are discussed.


Assuntos
Análise de Fourier , Imageamento Tridimensional/métodos , Nanopartículas/química , Tamanho da Partícula , RNA Catalítico/química , Estrutura Molecular , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA