Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 190(4): 2350-2365, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35984294

RESUMO

With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Ácidos Indolacéticos/metabolismo , Zea mays/metabolismo
2.
Plant Physiol ; 154(3): 1294-303, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20847139

RESUMO

Short days (SDs) in autumn induce growth cessation, bud set, cold acclimation, and dormancy in trees of boreal and temperate forests, and these responses occur earlier in northern than in southern genotypes. Nevertheless, we know little about whether this variation results from differential perception of SDs or differential downstream responses to the SD signal or a combination of the two. We compared global patterns of SD-regulated gene expression in the stems of hybrid poplar (Populus trichocarpa × Populus deltoides) clones that differ in their SD-induced growth cessation in order to address this question. The timing of cessation of cambial cell division caused by SDs differed between the clones and was coincident with the change in the pattern of expression of the auxin-regulated genes. The clones also differed in the timing of their SD-regulated changes in the transcript abundance of genes associated with cold tolerance, starch breakdown, and storage protein accumulation. By analyzing the expression of homologs of FLOWERING LOCUS T, we demonstrated that the clones differed little in their perception of SDs under the growth conditions applied but differed substantially in the downstream responses manifested in the timing and magnitude of gene expression after SD treatment. These results demonstrate the existence of factors that act downstream of SD perception and can contribute to variation in SD-regulated adaptive photoperiodic responses in trees.


Assuntos
Câmbio/crescimento & desenvolvimento , Fotoperíodo , Populus/crescimento & desenvolvimento , Câmbio/citologia , Divisão Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Populus/genética , RNA de Plantas/genética , Árvores/genética , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA