Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
ACS Chem Neurosci ; 15(3): 645-655, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275568

RESUMO

In recent years, there has been growing interest in the potential therapeutic use of inhibitors of adenosine A2A receptors (A2AR) for the treatment of neurodegenerative diseases and cancer. Nevertheless, the widespread expression of A2AR throughout the body emphasizes the importance of temporally and spatially selective ligands. Photopharmacology is an emerging strategy that utilizes photosensitive ligands to attain high spatiotemporal precision and regulate the function of biomolecules using light. In this study, we combined photochemistry and cellular and in vivo photopharmacology to investigate the light sensitivity of the FDA-approved antagonist istradefylline and its potential use as an A2AR photopharmacological tool. Our findings reveal that istradefylline exhibits rapid trans-to-cis isomerization under near-UV light, and prolonged exposure results in the formation of photocycloaddition products. We demonstrate that exposure to UV light triggers a time-dependent decrease in the antagonistic activity of istradefylline in A2AR-expressing cells and enables real-time optical control of A2AR signaling in living cells and zebrafish. Together, these data demonstrate that istradefylline is a photoinactivatable A2AR antagonist and that this property can be utilized to perform photopharmacological experiments in living cells and animals.


Assuntos
Receptor A2A de Adenosina , Peixe-Zebra , Animais , Receptor A2A de Adenosina/metabolismo , Peixe-Zebra/metabolismo , Purinas/farmacologia , Transdução de Sinais , Antagonistas do Receptor A2 de Adenosina/uso terapêutico
3.
Neurobiol Dis ; 187: 106297, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717661

RESUMO

Mechanosensors are emerging players responding to hemodynamic and physical inputs. Their significance in the central nervous system remains relatively uncharted. Using human-derived brain specimens or cells and a pre-clinical model of mesio-temporal lobe epilepsy (MTLE), we examined how the mRNA levels of the mechanosensitive channel PIEZO1 adjust to disease-associated pro-inflammatory trajectories. In brain tissue micro-punches obtained from 18 drug-resistant MTLE patients, PIEZO1 expression positively correlated with pro-inflammatory biomarkers TNFα, IL-1ß, and NF-kB in the epileptogenic hippocampus compared to the adjacent amygdala and temporal cortex tissues. In an experimental MTLE model, hippocampal Piezo1 and cytokine expression levels were increased post-status epilepticus (SE) and during epileptogenesis. Piezo1 expression positively correlated with Tnfα, Il1ß, and Nf-kb in the hippocampal foci. Next, by combining RNAscope with immunohistochemistry, we identified Piezo1 in glio-vascular cells. Post-SE and during epileptogenesis, ameboid IBA1 microglia, hypertrophic GFAP astrocytes, and damaged NG2DsRed pericytes exhibited time-dependent patterns of increased Piezo1 expression. Digital droplet PCR analysis confirmed the Piezo1 trajectory in isolated hippocampal microvessels in the ipsi and contralateral hippocampi. The combined examinations performed in this model showed Piezo1 expression returning towards basal levels after the epileptogenesis-associated peak inflammation. From these associations, we next asked whether pro-inflammatory players directly regulate PIEZO1 expression. We used human-derived brain cells and confirmed that endothelium, astrocytes, and pericytes expressed PIEZO1. Exposure to human recombinant TNFα or IL1ß upregulated NF-kB in all cells. Furthermore, TNFα induced PIEZO1 expression in a dose and time-dependent manner, primarily in astrocytes. This exploratory study describes a spatiotemporal dialogue between PIEZO1 brain cell-mechanobiology and neuro-inflammatory cell remodeling. The precise functional mechanisms regulating this interplay in disease conditions warrant further investigation.

5.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264878

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease caused by mutations affecting components of bone morphogenetic protein (BMP)/transforming growth factor-ß (TGF-ß) signaling in endothelial cells. This disorder is characterized by arteriovenous malformations that are prone to rupture, and the ensuing hemorrhages are responsible for iron-deficiency anemia. Along with activin receptor-like kinase (ALK1), mutations in endoglin are associated with the vast majority of HHT cases. In this study, we characterized the zebrafish endoglin locus and demonstrated that it produces two phylogenetically conserved protein isoforms. Functional analysis of a CRISPR/Cas9 zebrafish endoglin mutant revealed that Endoglin deficiency is lethal during the course from juvenile stage to adulthood. Endoglin-deficient zebrafish develop cardiomegaly, resulting in heart failure and hypochromic anemia, which both stem from chronic hypoxia. endoglin mutant zebrafish display structural alterations of the developing gills and underlying vascular network that coincide with hypoxia. Finally, phenylhydrazine treatment demonstrated that lowering hematocrit/blood viscosity alleviates heart failure and enhances the survival of Endoglin-deficient fish. Overall, our data link Endoglin deficiency to heart failure and establish zebrafish as a valuable HHT model.


Assuntos
Insuficiência Cardíaca , Telangiectasia Hemorrágica Hereditária , Animais , Endoglina/genética , Endoglina/metabolismo , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Peixe-Zebra , Células Endoteliais/metabolismo , Insuficiência Cardíaca/metabolismo , Receptores de Activinas Tipo II/genética
6.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047693

RESUMO

The rhythmical nature of the cardiovascular system constantly generates dynamic mechanical forces. At the centre of this system is the heart, which must detect these changes and adjust its performance accordingly. Mechanoelectric feedback provides a rapid mechanism for detecting even subtle changes in the mechanical environment and transducing these signals into electrical responses, which can adjust a variety of cardiac parameters such as heart rate and contractility. However, pathological conditions can disrupt this intricate mechanosensory system and manifest as potentially life-threatening cardiac arrhythmias. Mechanosensitive ion channels are thought to be the main proponents of mechanoelectric feedback as they provide a rapid response to mechanical stimulation and can directly affect cardiac electrical activity. Here, we demonstrate that the mechanosensitive ion channel PIEZO1 is expressed in zebrafish cardiomyocytes. Furthermore, chemically prolonging PIEZO1 activation in zebrafish results in cardiac arrhythmias. indicating that this ion channel plays an important role in mechanoelectric feedback. This also raises the possibility that PIEZO1 gain of function mutations could be linked to heritable cardiac arrhythmias in humans.


Assuntos
Arritmias Cardíacas , Canais Iônicos , Animais , Humanos , Arritmias Cardíacas/genética , Doença do Sistema de Condução Cardíaco , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
J Transl Med ; 21(1): 160, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855159

RESUMO

BACKGROUND: Recent studies have shown the implication of the ROBO-SLIT pathway in heart development. Within this study, we aimed to further assess the implication of the ROBO and SLIT genes mainly in bicuspid aortic valve (BAV) and other human congenital heart defects (CHD). METHODS: We have analyzed a cohort of singleton exome sequencing data comprising 40 adult BAV patients, 20 pediatric BAV patients generated by the Pediatric Cardiac Genomics Consortium, 10 pediatric cases with tetralogy of Fallot (ToF), and one case with coarctation of the aorta. A gene-centered analysis of data was performed. To further advance the interpretation of the variants, we intended to combine more than 5 prediction tools comprising the assessment of protein structure and stability. RESULTS: A total of 24 variants were identified. Only 4 adult BAV patients (10%) had missense variants in the ROBO and SLIT genes. In contrast, 19 pediatric cases carried variants in ROBO or SLIT genes (61%). Three BAV patients with a severe phenotype were digenic. Segregation analysis was possible for two BAV patients. For the homozygous ROBO4: p.(Arg776Cys) variant, family segregation was consistent with an autosomal recessive pattern of inheritance. The ROBO4: c.3001 + 3G > A variant segregates with the affected family members. Interestingly, these variants were also found in two unrelated patients with ToF highlighting that the same variant in the ROBO4 gene may underlie different cardiac phenotypes affecting the outflow tract development. CONCLUSION: Our results further reinforce the implication of the ROBO4 gene not only in BAV but also in ToF hence the importance of its inclusion in clinical genetic testing. The remaining ROBO and SLIT genes may be screened in patients with negative or inconclusive genetic tests.


Assuntos
Cardiopatias Congênitas , Tetralogia de Fallot , Adulto , Humanos , Criança , Cardiopatias Congênitas/genética , Testes Genéticos , Fenômica , Coração
9.
Front Cardiovasc Med ; 10: 1138485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998973

RESUMO

Since the first evidence of cardiac regeneration was observed, almost 50 years ago, more studies have highlighted the endogenous regenerative abilities of several models following cardiac injury. In particular, analysis of cardiac regeneration in zebrafish and neonatal mice has uncovered numerous mechanisms involved in the regenerative process. It is now apparent that cardiac regeneration is not simply achieved by inducing cardiomyocytes to proliferate but requires a multifaceted response involving numerous different cell types, signaling pathways and mechanisms which must all work in harmony in order for regeneration to occur. In this review we will endeavor to highlight a variety of processes that have been identifed as being essential for cardiac regeneration.

10.
Nat Commun ; 14(1): 1543, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941270

RESUMO

Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Proteínas de Homeodomínio , Animais , Camundongos , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Histidina/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Homeodomínio/genética
11.
J Mol Cell Biol ; 14(10)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36271843

RESUMO

Understanding how certain animals are capable of regenerating their hearts will provide much needed insights into how this process can be induced in humans in order to reverse the damage caused by myocardial infarction. Currently, it is becoming increasingly evident that cardiac interstitial cells play crucial roles during cardiac regeneration. To understand how interstitial cells behave during this process, we performed single-cell RNA sequencing of regenerating zebrafish hearts. Using a combination of immunohistochemistry, chemical inhibition, and novel transgenic animals, we were able to investigate the role of cell type-specific mechanisms during cardiac regeneration. This approach allowed us to identify a number of important regenerative processes within the interstitial cell populations. Here, we provide detailed insight into how interstitial cells behave during cardiac regeneration, which will serve to increase our understanding of how this process could eventually be induced in humans.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Humanos , Peixe-Zebra , Animais Geneticamente Modificados , Proliferação de Células
12.
Front Cardiovasc Med ; 10: 1186086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259319

RESUMO

Myocardial damage caused, for example, by cardiac ischemia leads to ventricular volume overload resulting in increased stretch of the remaining myocardium. In adult mammals, these changes trigger an adaptive cardiomyocyte hypertrophic response which, if the damage is extensive, will ultimately lead to pathological hypertrophy and heart failure. Conversely, in response to extensive myocardial damage, cardiomyocytes in the adult zebrafish heart and neonatal mice proliferate and completely regenerate the damaged myocardium. We therefore hypothesized that in adult zebrafish, changes in mechanical loading due to myocardial damage may act as a trigger to induce cardiac regeneration. Based on this notion we sought to identify mechanosensors which could be involved in detecting changes in mechanical loading and triggering regeneration. Here we show using a combination of knockout animals, RNAseq and in vitro assays that the mechanosensitive ion channel Trpc6a is required by cardiomyocytes for successful cardiac regeneration in adult zebrafish. Furthermore, using a cyclic cell stretch assay, we have determined that Trpc6a induces the expression of components of the AP1 transcription complex in response to mechanical stretch. Our data highlights how changes in mechanical forces due to myocardial damage can be detected by mechanosensors which in turn can trigger cardiac regeneration.

13.
Biology (Basel) ; 11(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35453802

RESUMO

The use of zebrafish to explore cardiac physiology has been widely adopted within the scientific community. Whether this animal model can be used to determine drug cardiac toxicity via electrocardiogram (ECG) analysis is still an ongoing question. Several reports indicate that the recording configuration severely affects the ECG waveforms and its derived-parameters, emphasizing the need for improved characterization. To address this problem, we recorded ECGs from adult zebrafish hearts in three different configurations (unexposed heart, exposed heart, and extracted heart) to identify the most reliable method to explore ECG recordings at baseline and in response to commonly used clinical therapies. We found that the exposed heart configuration provided the most reliable and reproducible ECG recordings of waveforms and intervals. We were unable to determine T wave morphology in unexposed hearts. In extracted hearts, ECG intervals were lengthened and P waves were unstable. However, in the exposed heart configuration, we were able to reliably record ECGs and subsequently establish the QT-RR relationship (Holzgrefe correction) in response to changes in heart rate.

14.
Nat Commun ; 13(1): 417, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058427

RESUMO

Photoactivatable drugs targeting ligand-gated ion channels open up new opportunities for light-guided therapeutic interventions. Photoactivable toxins targeting ion channels have the potential to control excitable cell activities with low invasiveness and high spatiotemporal precision. As proof-of-concept, we develop HwTxIV-Nvoc, a UV light-cleavable and photoactivatable peptide that targets voltage-gated sodium (NaV) channels and validate its activity in vitro in HEK293 cells, ex vivo in brain slices and in vivo on mice neuromuscular junctions. We find that HwTxIV-Nvoc enables precise spatiotemporal control of neuronal NaV channel function under all conditions tested. By creating multiple photoactivatable toxins, we demonstrate the broad applicability of this toxin-photoactivation technology.


Assuntos
Luz , Peptídeos/toxicidade , Toxinas Biológicas/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/fisiologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos da radiação , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurônios/efeitos da radiação , Peptídeos/síntese química , Peptídeos/química , Engenharia de Proteínas , Fatores de Tempo , Raios Ultravioleta , Peixe-Zebra
15.
Clin Transl Med ; 11(3): e319, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784018

RESUMO

BACKGROUND: Severe ventricular rhythm disturbances are the hallmark of arrhythmogenic cardiomyopathy (ACM), and are often explained by structural conduction abnormalities. However, comprehensive investigations of ACM cell electrical instability are lacking. This study aimed to elucidate early electrical myogenic signature of ACM. METHODS: We investigated a 41-year-old ACM patient with a missense mutation (c.394C>T) in the DSC2 gene, which encodes desmocollin 2. Pathogenicity of this variant was confirmed using a zebrafish DSC2 model system. Control and DSC2 patient-derived pluripotent stem cells were reprogrammed and differentiated into cardiomyocytes (hiPSC-CM) to examine the specific electromechanical phenotype and its modulation by antiarrhythmic drugs (AADs). Samples of the patient's heart and hiPSC-CM were examined to identify molecular and cellular alterations. RESULTS: A shortened action potential duration was associated with reduced Ca2+ current density and increased K+ current density. This finding led to the elucidation of previously unknown abnormal repolarization dynamics in ACM patients. Moreover, the Ca2+ mobilised during transients was decreased, and the Ca2+ sparks frequency was increased. AAD testing revealed the following: (1) flecainide normalised Ca2+ transients and significantly decreased Ca2+ spark occurrence and (2) sotalol significantly lengthened the action potential and normalised the cells' contractile properties. CONCLUSIONS: Thorough analysis of hiPSC-CM derived from the DSC2 patient revealed abnormal repolarization dynamics, prompting the discovery of a short QT interval in some ACM patients. Overall, these results confirm a myogenic origin of ACM electrical instability and provide a rationale for prescribing class 1 and 3 AADs in ACM patients with increased ventricular repolarization reserve.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Desmocolinas/genética , Eletrocardiografia/métodos , Canais Iônicos/genética , Adulto , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Peixe-Zebra
16.
Environ Pollut ; 278: 116755, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725534

RESUMO

Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40-80 Hz) and an increase of theta (6-9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 µg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 µg/L, while other components provoked changes from 0.5 µg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 µg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.


Assuntos
Clorpirifos , Praguicidas , Animais , Feminino , Larva , Masculino , Camundongos , Nível de Efeito Adverso não Observado , Praguicidas/toxicidade , Peixe-Zebra
17.
Chemosphere ; 267: 128986, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33359984

RESUMO

The presence of glyphosate represents a debated ecotoxicological and health risk factor. Here, zebrafish larvae were exposed, from 1.5 to 120 h post-fertilization, to a broad concentration range (0.05-10.000 µg/L) of glyphosate to explore its impact on the brain. We evaluated morphology, tracked locomotor behavior and neurophysiological parameters, examined neuro-glio-vascular cell structures, and outlined transcriptomic outcomes by RNA sequencing. At the concentration range tested, glyphosate did not elicit gross morphological changes. Behavioral analysis revealed a significant decrease in locomotor activity following the exposure to 1000 µg/L glyphosate or higher. In parallel, midbrain electrophysiological recordings indicated abnormal, and variable, spike activity in zebrafish larvae exposed to 1000 µg/L glyphosate. Next, we asked whether the observed neurophysiological outcome could be secondary to brain structural modifications. We used transgenic zebrafish and in vivo 2-photon microscopy to examine, at the cellular level, the effects of the behavior-modifying concentration of 1000 µg/L, comparing to low 0.1 µg/L, and control. We ruled out the presence of cerebrovascular and neuronal malformations. However, microglia morphological modifications were visible at the two glyphosate concentrations, specifically the presence of amoeboid cells suggestive of activation. Lastly, RNAseq analysis showed the deregulation of transcript families implicated in neuronal physiology, synaptic transmission, and inflammation, as evaluated at the two selected glyphosate concentrations. In zebrafish larvae, behavioral and neurophysiological defects occur after the exposure to high glyphosate concentrations while cellular and transcript signatures can be detected in response to low dose. The prospective applicability to ecotoxicology and the possible extension to brain-health vulnerability are critically discussed.


Assuntos
Herbicidas , Peixe-Zebra , Animais , Glicina/análogos & derivados , Herbicidas/toxicidade , Humanos , Larva/genética , Estudos Prospectivos , Peixe-Zebra/genética , Glifosato
18.
J Mol Cell Cardiol ; 143: 51-62, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251670

RESUMO

AIMS: During embryogenesis, the onset of circulatory blood flow generates a variety of hemodynamic forces which reciprocally induce changes in cardiovascular development and performance. It has been known for some time that these forces can be detected by as yet unknown mechanosensory systems which in turn promote cardiogenic events such as outflow tract and aortic valve development. PIEZO1 is a mechanosensitive ion channel present in endothelial cells where it serves to detect hemodynamic forces making it an ideal candidate to play a role during cardiac development. We sought to determine whether PIEZO1 is required for outflow tract and aortic valve development. METHODS AND RESULTS: By analysing heart development in zebrafish we have determined that piezo1 is expressed in the developing outflow tract where it serves to detect hemodynamic forces. Consequently, disrupting Piezo1 signalling leads to defective outflow tract and aortic valve development and indicates this gene may be involved in the etiology of congenital heart diseases. Based on these findings, we analysed genomic data generated from patients who suffer from left ventricular outflow tract obstructions (LVOTO) and identified 3 probands who each harboured potentially pathogenic variants in PIEZO1. Subsequent in vitro and in vivo assays indicates that these variants behave as dominant negatives leading to an inhibition of normal PIEZO1 mechanosensory activity. Expressing these dominant negative PIEZO1 variants in zebrafish endothelium leads to defective aortic valve development. CONCLUSION: These data indicate that the mechanosensitive ion channel piezo1 is required for outflow tract and aortic valve development.


Assuntos
Valva Aórtica/embriologia , Hemodinâmica , Canais Iônicos/genética , Organogênese/genética , Proteínas de Peixe-Zebra/genética , Alelos , Sequência de Aminoácidos , Animais , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
19.
Sci Rep ; 8(1): 15311, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333618

RESUMO

KCNK2 is a 2 pore domain potassium channel involved in maintaining cellular membrane resting potentials. Although KCNK2 is regarded as a mechanosensitive ion channel, it can also be gated chemically. Previous research indicates that KCNK2 expression is particularly enriched in neuronal and cardiac tissues. In this respect, KCNK2 plays an important role in neuroprotection and has also been linked to cardiac arrhythmias. KCNK2 has subsequently become an attractive pharmacologic target for developing preventative/curative strategies for neuro/cardio pathophysiological conditions. Zebrafish represent an important in vivo model for rapidly analysing pharmacological compounds. We therefore sought to identify and characterise zebrafish kcnk2 to allow this model system to be incorporated into therapeutic research. Our data indicates that zebrafish possess two kcnk2 orthologs, kcnk2a and kcnk2b. Electrophysiological analysis of both zebrafish Kcnk2 orthologs shows that, like their human counterparts, they are activated by different physiological stimuli such as mechanical stretch, polyunsaturated fatty acids and intracellular acidification. Furthermore, both zebrafish Kcnk2 channels are inhibited by the human KCNK2 inhibitory peptide spadin. Taken together, our results demonstrate that both Kcnk2a and Kcnk2b share similar biophysiological and pharmacological properties to human KCNK2 and indicate that the zebrafish will be a useful model for developing KCNK2 targeting strategies.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Células Cultivadas , Fluoxetina/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Riluzol/farmacologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
20.
Int J Cardiol ; 249: 340-343, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986054

RESUMO

Hemodynamic forces have been known for a long time to regulate cardiogenic processes such as cardiac valve development. During embryonic development in vertebrates, the outflow tract (OFT) adjacent to the ventricle comes under increasing hemodynamic load as cardiogenesis proceeds. Consequently, extracellular matrix components are produced in this region as the cardiac cushions form which will eventually give rise to the aortic valves. The proteoglycan AGGRECAN is a key component of the aortic valves and is frequently found to be deregulated in a variety of aortic valve diseases. Here we demonstrate that aggrecan expression in the OFT of developing zebrafish embryos is hemodynamically dependent, a process presumably mediated by mechanosensitive channels. Furthermore, knockdown or knockout of aggrecan leads to failure of the OFT to develop resulting in stenosis. Based on these findings we analysed the expression of AGGRECAN in human bicuspid aortic valves (BAV). We found that in type 0 BAV there was a significant reduction in the expression of AGGRECAN. Our data indicate that aggrecan is required for OFT development and when its expression is reduced this is associated with BAV in humans.


Assuntos
Agrecanas/biossíntese , Valva Aórtica/anormalidades , Cardiopatias Congênitas/metabolismo , Doenças das Valvas Cardíacas/embriologia , Doenças das Valvas Cardíacas/metabolismo , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Adulto , Agrecanas/genética , Animais , Valva Aórtica/embriologia , Valva Aórtica/crescimento & desenvolvimento , Valva Aórtica/metabolismo , Doença da Válvula Aórtica Bicúspide , Expressão Gênica , Cardiopatias Congênitas/genética , Doenças das Valvas Cardíacas/genética , Ventrículos do Coração/crescimento & desenvolvimento , Humanos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA