Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Dev Cogn Neurosci ; 69: 101423, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39098249

RESUMO

The human brain undergoes rapid development during the first years of life. Beginning in utero, a wide array of biological, social, and environmental factors can have lasting impacts on brain structure and function. To understand how prenatal and early life experiences alter neurodevelopmental trajectories and shape health outcomes, several NIH Institutes, Centers, and Offices collaborated to support and launch the HEALthy Brain and Child Development (HBCD) Study. The HBCD Study is a multi-site prospective longitudinal cohort study, that will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Influenced by the success of the ongoing Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®) and in partnership with the NIH Helping to End Addiction Long-term® Initiative, or NIH HEAL Initiative®, the HBCD Study aims to establish a diverse cohort of over 7000 pregnant participants to understand how early life experiences, including prenatal exposure to addictive substances and adverse social environments as well as their interactions with an individual's genes, can affect neurodevelopmental trajectories and outcomes. Knowledge gained from the HBCD Study will help identify targets for early interventions and inform policies that promote resilience and mitigate the neurodevelopmental effects of adverse childhood experiences and environments.

2.
Dev Cogn Neurosci ; 69: 101431, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39173581

RESUMO

The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Study success depends on the engagement and inclusion of diverse populations of pregnant participants and their children across the United States, including those at high and low risk for prenatal substance use. The Communications, Engagement, and Dissemination (CED) Committee is responsible for the development and implementation of a strategy to promote awareness about the study, encourage participation, and engage HBCD families, community partners, and collaborators. Initial work involved developing versatile recruitment and awareness materials with a consistent and inclusive message that reduces stigma and negative bias towards marginalized populations, including people with substance use and other mental health conditions. These efforts were shaped by an integrated product development workflow and early engagement with HBCD partners to address challenges. Ongoing work includes the expansion of HBCD outreach through newsletters and social media platforms with an emphasis on protecting participant privacy. Future activities will focus on disseminating scientific information through generation of infographics and webinars that will inform participants, families, and the public of discoveries generated from HBCD Study data.

4.
J Neurosci ; 43(3): 373-385, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36517243

RESUMO

Cannabinoids modulate dopamine (DA) transmission and DA-related behavior, which has been thought to be mediated initially by activation of cannabinoid CB1 receptors (CB1Rs) on GABA neurons. However, there is no behavioral evidence supporting it. In contrast, here we report that CB1Rs are also expressed in a subset of DA neurons and functionally underlie cannabinoid action in male and female mice. RNAscope in situ hybridization (ISH) assays demonstrated CB1 mRNA in tyrosine hydroxylase (TH)-positive DA neurons in the ventral tegmental area (VTA) and glutamate decarboxylase 1 (GAD1)-positive GABA neurons. The CB1R-expressing DA neurons were located mainly in the middle portion of the VTA with the number of CB1-TH colocalization progressively decreasing from the medial to the lateral VTA. Triple-staining assays indicated CB1R mRNA colocalization with both TH and vesicular glutamate transporter 2 (VgluT2, a glutamate neuronal marker) in the medial VTA close to the midline of the brain. Optogenetic activation of this population of DA neurons was rewarding as assessed by optical intracranial self-stimulation. Δ9-tetrahydrocannabinol (Δ9-THC) or ACEA (a selective CB1R agonist) dose-dependently inhibited optical intracranial self-stimulation in DAT-Cre control mice, but not in conditional knockout mice with the CB1R gene absent in DA neurons. In addition, deletion of CB1Rs from DA neurons attenuated Δ9-THC-induced reduction in DA release in the NAc, locomotion, and anxiety. Together, these findings indicate that CB1Rs are expressed in a subset of DA neurons that corelease DA and glutamate, and functionally underlie cannabinoid modulation of DA release and DA-related behavior.SIGNIFICANCE STATEMENT Cannabinoids produce a series of psychoactive effects, such as aversion, anxiety, and locomotor inhibition in rodents. However, the cellular and receptor mechanisms underlying these actions are not fully understood. Here we report that CB1 receptors are expressed not only in GABA neurons but also in a subset of dopamine neurons, which are located mainly in the medial VTA close to the midline of the midbrain and corelease dopamine and glutamate. Optogenetic activation of these dopamine neurons is rewarding, which is dose-dependently inhibited by cannabinoids. Selective deletion of CB1 receptor from dopamine neurons blocked cannabinoid-induced aversion, hypoactivity, and anxiolytic effects. These findings demonstrate that dopaminergic CB1 receptors play an important role in mediating cannabinoid action.


Assuntos
Ansiolíticos , Canabinoides , Feminino , Camundongos , Masculino , Animais , Canabinoides/farmacologia , Neurônios Dopaminérgicos/fisiologia , Ansiolíticos/farmacologia , Dronabinol/farmacologia , Dopamina/fisiologia , Receptores de Canabinoides , Área Tegmentar Ventral/fisiologia , Receptores Dopaminérgicos , Camundongos Knockout , Ácido Glutâmico/farmacologia , RNA Mensageiro , Receptor CB1 de Canabinoide/genética
6.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064236

RESUMO

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Assuntos
Grelina , Receptores de Grelina , Animais , Animais Geneticamente Modificados , Grelina/farmacologia , Camundongos , Oxicodona , Ratos , Ratos Long-Evans , Ratos Wistar
7.
J Biomed Sci ; 28(1): 83, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852810

RESUMO

Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.


Assuntos
Comportamento Aditivo/psicologia , Dopamina/deficiência , Neurônios Dopaminérgicos/metabolismo , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração , Reflexo , Animais , Comportamento Apetitivo/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Camundongos , Ratos , Reflexo/efeitos dos fármacos
8.
Transl Psychiatry ; 11(1): 570, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750356

RESUMO

Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine's pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.


Assuntos
Cocaína , Dopamina , Animais , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Núcleo Accumbens/metabolismo , Transmissão Sináptica , Zinco
9.
Neurotoxicol Teratol ; 88: 107020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34419619

RESUMO

Discussions about non-pharmacologic interventions for Neonatal Abstinence Syndrome and Neonatal Opioid Withdrawal Syndrome (NAS/NOWS) have been minor compared with wider attention to pharmacologic treatments. Although historically under-recognized, non-pharmacologic interventions are of paramount importance for all substance-exposed infants and remain as a first line therapy for the care of infants affected by NAS. Here we examine the role of non-pharmacologic interventions for NAS/NOWS by incorporating theoretical perspectives from different disciplines that inform the importance of individualized assessment of the mother-caregiver/infant dyad and interventions that involve both individuals. NAS/NOWS is a complex, highly individualized constellation of signs/symptoms that vary widely in onset, duration, severity, expression, responses to treatment and influence on long-term outcomes. NAS/NOWS often occurs in infants with multiple prenatal/postnatal factors that can compromise neurobiological self-regulatory functioning. We propose to rethink some of the long-held assumptions, beliefs, and paradigms about non-pharmacologic care of the infant with NAS/NOWS, which is provided as non-specific or as "bundled" in current approaches. This paper is Part I of a two-part series on re-conceptualizing non-pharmacologic care for NAS/NOWS as individualized treatment of the dyad. Here, we set the foundation for a new treatment approach grounded in developmental theory and evidence-based observations of infant neurobiology and neurodevelopment. In Part II, we provide actionable, individually tailored evaluations and approaches to non-pharmacologic NAS/NOWS treatment based on measurable domains of infant neurobehavioral functioning.


Assuntos
Analgésicos Opioides/metabolismo , Medicina Baseada em Evidências , Síndrome de Abstinência Neonatal/tratamento farmacológico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Estudos de Avaliação como Assunto , Feminino , Humanos , Lactente , Mães , Síndrome de Abstinência Neonatal/diagnóstico , Gravidez , Síndrome de Abstinência a Substâncias/diagnóstico
12.
Addict Biol ; 26(4): e13005, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538103

RESUMO

Despite extensive research, the rewarding effects of cannabinoids are still debated. Here, we used a newly established animal procedure called optogenetic intracranial self-stimulation (ICSS) (oICSS) to re-examine the abuse potential of cannabinoids in mice. A specific adeno-associated viral vector carrying a channelrhodopsin gene was microinjected into the ventral tegmental area (VTA) to express light-sensitive channelrhodopsin in dopamine (DA) neurons of transgenic dopamine transporter (DAT)-Cre mice. Optogenetic stimulation of VTA DA neurons was highly reinforcing and produced a classical "sigmoidal"-shaped stimulation-response curve dependent upon the laser pulse frequency. Systemic administration of cocaine dose-dependently enhanced oICSS and shifted stimulation-response curves upward, in a way similar to previously observed effects of cocaine on electrical ICSS. In contrast, Δ9 -tetrahydrocannabinol (Δ9 -THC), but not cannabidiol, dose-dependently decreased oICSS responding and shifted oICSS curves downward. WIN55,212-2 and ACEA, two synthetic cannabinoids often used in laboratory settings, also produced dose-dependent reductions in oICSS. We then examined several new synthetic cannabinoids, which are used recreationally. XLR-11 produced a cocaine-like increase, AM-2201 produced a Δ9 -THC-like reduction, while 5F-AMB had no effect on oICSS responding. Immunohistochemistry and RNAscope in situ hybridization assays indicated that CB1 Rs are expressed mainly in VTA GABA and glutamate neurons, while CB2 Rs are expressed mainly in VTA DA neurons. Together, these findings suggest that most cannabinoids are not reward enhancing, but rather reward attenuating or aversive in mice. Activation of CB1 R and/or CB2 R in different populations of neurons in the brain may underlie the observed actions.


Assuntos
Canabinoides/efeitos adversos , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Optogenética/métodos , Animais , Comportamento Animal , Cocaína/farmacologia , Neurônios Dopaminérgicos , Dronabinol/farmacologia , Integrases , Masculino , Camundongos , Camundongos Transgênicos , Recompensa , Autoestimulação/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
13.
Annu Rev Pharmacol Toxicol ; 61: 609-628, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33411583

RESUMO

The abuse of illicit psychostimulants such as cocaine and methamphetamine continues to pose significant health and societal challenges. Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions about what mechanism(s) of action should be targeted for developing pharmacotherapies. As both cocaine and methamphetamine rapidly increase dopamine (DA) levels in mesolimbic brain regions, leading to euphoria that in some can lead to addiction, targets in which this increased dopaminergic tone may be mitigated have been explored. Further, understanding and targeting mechanisms underlying relapse are fundamental to the success of discovering medications that reduce the reinforcing effects of the drug of abuse, decrease the negative reinforcement or withdrawal/negative affect that occurs during abstinence, or both. Atypical inhibitors of the DA transporter and partial agonists/antagonists at DA D3 receptors are described as two promising targets for future drug development.


Assuntos
Comportamento Aditivo , Estimulantes do Sistema Nervoso Central , Cocaína , Preparações Farmacêuticas , Dopamina , Humanos
14.
J Perinatol ; 41(6): 1364-1371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33514878

RESUMO

Neonatal abstinence syndrome (NAS) results from discontinuation of in utero exposures to opioids/substances. The rising incidence of NAS has prompted an increased need for accurate research and public health data. To examine how NAS has been defined in clinical studies of opioid-exposed mothers and infants, a review process was developed based on the RAND/UCLA Appropriateness Method, yielding 888 abstracts. Per inclusion criteria, 57 abstracts underwent full-text review. To define NAS, studies cited using modified versions of the Finnegan NAS scoring tool (n = 21; 37%), ICD-9/10 coding (n = 17; 30%), original Finnegan tool (n = 16; 28%), Eat Sleep Console (n = 3; 5%), and Lipsitz (n = 3; 5%) tools, (3 cited 2+ tools). Most studies utilized subjective NAS scoring/assessment algorithms and neonatal coding as key elements defining NAS. While most cited opioid exposure as integral to their inclusion criteria, 26% did not. These approaches highlight the need for a more refined and standardized definition of NAS.


Assuntos
Síndrome de Abstinência Neonatal , Feminino , Humanos , Recém-Nascido , Mães , Síndrome de Abstinência Neonatal/diagnóstico , Síndrome de Abstinência Neonatal/epidemiologia
15.
Front Neurosci ; 15: 811192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095405

RESUMO

Understanding risk factors for substance use disorders (SUD) can facilitate medication development for SUD treatment. While a rich literature exists discussing environmental factors that influence SUD, fewer articles have focused on genetic factors that convey vulnerability to drug use. Methods to identify SUD risk genes include Genome-Wide Association Studies (GWAS) and transgenic approaches. GWAS have identified hundreds of gene variants or single nucleotide polymorphisms (SNPs). However, few genes identified by GWAS have been verified by clinical or preclinical studies. In contrast, significant progress has been made in transgenic approaches to identify risk genes for SUD. In this article, we review recent progress in identifying candidate genes contributing to drug use and addiction using transgenic approaches. A central hypothesis is if a particular gene variant (e.g., resulting in reduction or deletion of a protein) is associated with increases in drug self-administration or relapse to drug seeking, this gene variant may be considered a risk factor for drug use and addiction. Accordingly, we identified several candidate genes such as those that encode dopamine D2 and D3 receptors, mGluR2, M4 muscarinic acetylcholine receptors, and α5 nicotinic acetylcholine receptors, which appear to meet the risk-gene criteria when their expression is decreased. Here, we describe the role of these receptors in drug reward and addiction, and then summarize major findings from the gene-knockout mice or rats in animal models of addiction. Lastly, we briefly discuss future research directions in identifying addiction-related risk genes and in risk gene-based medication development for the treatment of addiction.

17.
Advers Resil Sci ; 1(4): 217-221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33106790

RESUMO

The HEALthy Brain and Child Development (HBCD) study will establish a large cohort of pregnant women from regions of the country significantly affected by the opioid crisis and follow them and their children for at least 10 years. Findings from this cohort will help researchers understand normative childhood brain development as well as the long-term impact of prenatal and postnatal opioid and other drug and environmental exposures. The study will collect data on pregnancy and fetal development; infant and early childhood structural and functional brain imaging; anthropometrics; medical history; family history; biospecimens; and social, emotional, and cognitive development. Knowledge gained from this research will be critical to help predict and prevent some of the known effects of prenatal and postnatal exposure to certain drugs or environmental exposures, including risk for future substance use, mental disorders, and other behavioral and developmental problems. In this special issue, a subset of investigators that received funding for planning grants for the HBCD study provide careful guidelines and frameworks for study design, recruitment and retention of vulnerable populations, culturally sensitive practices, and biospecimen and neurodevelopmental assessment recommendations gathered in feasibility studies that will help inform the full HBCD study planned to begin recruitment in 2022.

18.
J Neurosci ; 40(46): 8853-8869, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046548

RESUMO

Opioid reward has traditionally been thought to be mediated by GABA-induced disinhibition of dopamine (DA) neurons in the VTA. However, direct behavioral evidence supporting this hypothesis is still lacking. In this study, we found that the µ opioid receptor (MOR) gene, Oprm1, is highly expressed in GABA neurons, with ∼50% of GABA neurons in the substantia nigra pars reticulata (SNr), ∼30% in the VTA, and ∼70% in the tail of the VTA (also called the rostromedial tegmental nucleus) in male rats. No Oprm1 mRNA was detected in midbrain DA neurons. We then found that optogenetic inhibition of VTA DA neurons reduced intravenous heroin self-administration, whereas activation of these neurons produced robust optical intracranial self-stimulation in DAT-Cre mice, supporting an important role of DA neurons in opioid reward. Unexpectedly, pharmacological blockade of MORs in the SNr was more effective than in the VTA in reducing heroin reward. Optogenetic activation of VTA GABA neurons caused place aversion and inhibited cocaine, but not heroin, self-administration, whereas optogenetic activation of SNr GABA neurons caused a robust increase in heroin self-administration with an extinction pattern, suggesting a compensatory response in drug intake due to reduced heroin reward. In addition, activation of SNr GABA neurons attenuated heroin-primed, but not cue-induced, reinstatement of drug-seeking behavior, whereas inhibition of SNr GABA neurons produced optical intracranial self-stimulation and place preference. Together, these findings suggest that MORs on GABA neurons in the SNr play more important roles in opioid reward and relapse than MORs on VTA GABA neurons.SIGNIFICANCE STATEMENT Opioid reward has long been believed to be mediated by inhibition of GABA interneurons in the VTA that subsequently leads to disinhibition of DA neurons. In this study, we found that more µ opioid receptors (MORs) are expressed in GABA neurons in the neighboring SNr than in the VTA, and that pharmacological blockade of MORs in the SNr is more effective in reducing heroin reward than blockade of MORs in the VTA. Furthermore, optogenetic activation of VTA GABA neurons inhibited cocaine, but not heroin, self-administration, whereas activation of SNr GABA neurons inhibited heroin reward and relapse. These findings suggest that opioid reward is more likely mediated by stimulation of MORs in GABA afferents from other brain regions than in VTA GABA neurons.


Assuntos
Neurônios GABAérgicos/fisiologia , Heroína/farmacologia , Entorpecentes/farmacologia , Recompensa , Substância Negra/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Sinais (Psicologia) , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Extinção Psicológica , Feminino , Masculino , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Ratos , Ratos Long-Evans , Receptores Opioides mu/biossíntese , Receptores Opioides mu/genética , Autoadministração
19.
20.
Neuropsychopharmacology ; 45(13): 2301, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32884099

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA