RESUMO
Golden Gate cloning allows rapid and reliable assembly of multiple DNA fragments in a defined orientation. Golden Gate cloning requires careful design of the restriction fragment overhangs to minimize undesired products and to generate the desired junctions. The ApE (A plasmid Editor) software package can assist in silico design of input fragments or to generate expected assembly products.
Assuntos
Clonagem Molecular , Software , Clonagem Molecular/métodos , Simulação por Computador , Plasmídeos/genética , Biologia Computacional/métodosRESUMO
Calcium channels at synaptic boutons are critical for synaptic function, but their number and distribution are poorly understood. This gap in knowledge is primarily due to the resolution limits of fluorescence microscopy. In the last decade, the diffraction limit of light was surpassed, and fluorescent molecules can now be localized with nanometer precision. Concurrently, new gene editing strategies allowed direct tagging of the endogenous calcium channel genes-expressed in the correct cells and at physiological levels. Further, the repurposing of self-labeling enzymes to attach fluorescent dyes to proteins improved photon yields enabling efficient localization of single molecules. Here, we describe tagging strategies, localization microscopy, and data analysis for calcium channel localization. In this case, we are imaging calcium channels fused with SNAP or HALO tags in live anesthetized C. elegans nematodes, but the analysis is relevant for any super-resolution preparations. We describe how to process images into localizations and protein clusters into confined nanodomains. Finally, we discuss strategies for estimating the number of calcium channels present at synaptic boutons. Key features ⢠Super-resolution imaging of live anesthetized C. elegans. ⢠Three-color super-resolution reconstruction of synapses. ⢠Nanodomains and the distribution of proteins. ⢠Quantification of the number of proteins at synapses from single-molecule localization data.
RESUMO
Amyotrophic lateral sclerosis can be caused by abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of neurons. Here, we use a C. elegans model for TDP-43-induced toxicity to identify the biological mechanisms that lead to disease-related phenotypes. By applying deep behavioral phenotyping and subsequent dissection of the neuromuscular circuit, we show that TDP-43 worms have profound defects in GABA neurons. Moreover, acetylcholine neurons appear functionally silenced. Enhancing functional output of repressed acetylcholine neurons at the level of, among others, G-protein-coupled receptors restores neurotransmission, but inefficiently rescues locomotion. Rebalancing the excitatory-to-inhibitory ratio in the neuromuscular system by simultaneous stimulation of the affected GABA- and acetylcholine neurons, however, not only synergizes the effects of boosting individual neurotransmitter systems, but instantaneously improves movement. Our results suggest that interventions accounting for the altered connectome may be more efficient in restoring motor function than those solely focusing on diseased neuron populations.
Assuntos
Caenorhabditis elegans , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Proteinopatias TDP-43 , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neurônios Colinérgicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Neurônios GABAérgicos/metabolismo , Locomoção , Neurônios Motores/metabolismo , Movimento , Transmissão Sináptica , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismoRESUMO
By engineering the point-spread function (PSF) of single molecules, different fluorophore species can be imaged simultaneously and distinguished by their unique PSF patterns. Here, we insert a silicon-dioxide phase plate at the Fourier plane of the detection path of a wide-field fluorescence microscope to produce distinguishable PSFs (X-PSFs) at different wavelengths. We demonstrate that the resulting PSFs can be localized spatially and spectrally using a maximum-likelihood estimation algorithm and can be utilized for hyper-spectral super-resolution microscopy of biological samples. We produced superresolution images of fixed U2OS cells using X-PSFs for dSTORM imaging with simultaneous illumination of up to three fluorophore species. The species were distinguished only by the PSF pattern. We achieved â¼21-nm lateral localization precision (FWHM) and â¼17-nm axial precision (FWHM) with an average of 1,800 - 3,500 photons per PSF and a background as high as 130 - 400 photons per pixel. The modified PSF distinguished fluorescent probes with â¼80â nm separation between spectral peaks.
RESUMO
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Assuntos
Fusão de Membrana , Proteínas SNARE , Humanos , Vesículas Sinápticas , Transmissão Sináptica , SinaptotagminasRESUMO
Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.
Assuntos
Caenorhabditis elegans , Canal de Liberação de Cálcio do Receptor de Rianodina , Vesículas Sinápticas , Animais , Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismoRESUMO
A plasmid Editor (ApE) is a free, multi-platform application for visualizing, designing, and presenting biologically relevant DNA sequences. ApE provides a flexible framework for annotating a sequence manually or using a user-defined library of features. ApE can be used in designing plasmids and other constructs via in silico simulation of cloning methods such as PCR, Gibson assembly, restriction-ligation assembly and Golden Gate assembly. In addition, ApE provides a platform for creating visually appealing linear and circular plasmid maps. It is available for Mac, PC, and Linux-based platforms and can be downloaded at https://jorgensen.biology.utah.edu/wayned/ape/.
RESUMO
Dynamin mediates fission of vesicles from the plasma membrane during endocytosis. Typically, dynamin is recruited from the cytosol to endocytic sites, requiring seconds to tens of seconds. However, ultrafast endocytosis in neurons internalizes vesicles as quickly as 50 ms during synaptic vesicle recycling. Here, we demonstrate that Dynamin 1 is pre-recruited to endocytic sites for ultrafast endocytosis. Specifically, Dynamin 1xA, a splice variant of Dynamin 1, interacts with Syndapin 1 to form molecular condensates on the plasma membrane. Single-particle tracking of Dynamin 1xA molecules confirms the liquid-like property of condensates in vivo. When Dynamin 1xA is mutated to disrupt its interaction with Syndapin 1, the condensates do not form, and consequently, ultrafast endocytosis slows down by 100-fold. Mechanistically, Syndapin 1 acts as an adaptor by binding the plasma membrane and stores Dynamin 1xA at endocytic sites. This cache bypasses the recruitment step and accelerates endocytosis at synapses.
Assuntos
Dinamina I , Vesículas Sinápticas , Dinamina I/genética , Dinamina I/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismoRESUMO
Unc18 and SNARE proteins form the core of the membrane fusion complex at synapses. To understand the functional interactions within the core machinery, we adopted an "interspecies complementation" approach in Caenorhabditis elegans. Substitutions of individual SNAREs and Unc18 proteins with those from yeast fail to rescue fusion. However, synaptic transmission could be restored in worm-yeast chimeras when two key interfaces were present: an Habc-Unc18 contact site and an Unc18-SNARE motif contact site. A constitutively open form of Unc18 bypasses the requirement for the Habc-Unc18 interface. These data suggest that the Habc domain of syntaxin is required for Unc18 to adopt an open conformation; open Unc18 then templates SNARE complex formation. Finally, we demonstrate that the SNARE and Unc18 machinery in the nematode C. elegans can be replaced by yeast proteins and still carry out synaptic transmission, pointing to the deep evolutionary conservation of these two interfaces.
RESUMO
Deep-brain microscopy is strongly limited by the size of the imaging probe, both in terms of achievable resolution and potential trauma due to surgery. Here, we show that a segment of an ultra-thin multi-mode fiber (cannula) can replace the bulky microscope objective inside the brain. By creating a self-consistent deep neural network that is trained to reconstruct anthropocentric images from the raw signal transported by the cannula, we demonstrate a single-cell resolution (< 10µm), depth sectioning resolution of 40 µm, and field of view of 200 µm, all with green-fluorescent-protein labelled neurons imaged at depths as large as 1.4 mm from the brain surface. Since ground-truth images at these depths are challenging to obtain in vivo, we propose a novel ensemble method that averages the reconstructed images from disparate deep-neural-network architectures. Finally, we demonstrate dynamic imaging of moving GCaMp-labelled C. elegans worms. Our approach dramatically simplifies deep-brain microscopy.
Assuntos
Encéfalo/diagnóstico por imagem , Aprendizado de Máquina , Microscopia de Fluorescência/métodos , Neuroimagem/métodos , Animais , Caenorhabditis elegans/citologia , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Procedimentos Cirúrgicos Minimamente Invasivos , Redes Neurais de Computação , Neurônios/citologia , Neurônios/metabolismoRESUMO
We mapped rol-9 to the mlt-11 locus (encoded by the gene W01F3.3) on the far-right end of chromosome V. The canonical allele of rol-9, sc148, is an in-frame deletion in a conserved exon of the protein that creates a gain-of-function roller phenotype. sc148 deletes a short peptide of unknown function conserved in nematodes.
RESUMO
Gene editing in C. elegans using plasmid-based CRISPR reagents requires microinjection of many animals to produce a single edit. Germline silencing of plasmid-borne Cas9 is a major cause of inefficient editing. Here, we present a set of C. elegans strains that constitutively express Cas9 in the germline from an integrated transgene. These strains markedly improve the success rate for plasmid-based CRISPR edits. For simple, short homology arm GFP insertions, 50-100% of injected animals typically produce edited progeny, depending on the target locus. Template-guided editing from an extrachromosomal array is maintained over multiple generations. We have built strains with the Cas9 transgene on multiple chromosomes. Additionally, each Cas9 locus also contains a heatshock-driven Cre recombinase for selectable marker removal and a bright fluorescence marker for easy outcrossing. These integrated Cas9 strains greatly reduce the workload for producing individual genome edits.
Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Edição de Genes/métodos , Genoma Helmíntico , AnimaisRESUMO
The high-gamma-amino butyric acid (GABA)-producing bacterium Levilactobacillus brevis strain NPS-QW 145, along with Streptococcus thermophilus (one of the two starter bacteria used to make yogurt for its proteolytic activity), enhances GABA production in milk. However, a mechanistic understanding of how Levilactobacillus brevis cooperates with S. thermophilus to stimulate GABA production has been lacking. Comparative peptidomic and metatranscriptomic analyses were carried out to unravel the casein and lactose utilization patterns during milk fermentation with the coculture. We found that particular peptides hydrolyzed by S. thermophilus ASCC1275 were transported and biodegraded with peptidase in Lb. brevis 145 to meet the growth needs of the latter. In addition, amino acid synthesis and metabolism in Lb. brevis 145 were activated to further support its growth. Glucose, as a result of lactose hydrolysis by S. thermophilus 1275, but not available lactose in milk, was metabolized as the main carbon source by Lb. brevis 145 for ATP production. In the stationary phase, under acidic conditions due to the accumulation of lactic acid produced by S. thermophilus 1275, the expression of genes involved in pyridoxal phosphate (coenzyme of glutamic acid decarboxylase) metabolism and glutamic acid decarboxylase (Gad) in Lb. brevis 145 was induced for GABA production.SIGNIFICANCE A huge market for GABA-rich milk as a dietary therapy for the management of hypertension is anticipated. The novelty of this work lies in applying peptide profiles supported by metatranscriptomics to elucidate (i) the pattern of casein hydrolysis by S. thermophilus 1275, (ii) the supply of peptides and glucose by S. thermophilus 1275 to Lb. brevis 145, (iii) the transportation of peptides in Lb. brevis and the degradation of peptides by this organism, which was reported to be nonproteolytic, and (iv) GABA production by Lb. brevis 145 under acidic conditions. Based on the widely reported contribution of lactic acid bacteria (LAB) and GABA to human health, the elucidation of interactions between the two groups of bacterial communities in the production of GABA-rich milk is important for promoting the development of functional dairy food and may provide new insight into the development of industrial GABA production.
Assuntos
Brevibacillus/metabolismo , Fermentação , Leite/metabolismo , Streptococcus thermophilus/metabolismo , Transcriptoma , Ácido gama-Aminobutírico/metabolismo , Animais , Transporte Biológico , Carbono/metabolismo , Técnicas de Cocultura , Perfilação da Expressão Gênica , Lactose/metabolismo , Proteínas do Leite/metabolismo , Nitrogênio/metabolismoRESUMO
Synaptic vesicles fuse with the plasma membrane to release neurotransmitter following an action potential, after which new vesicles must 'dock' to refill vacated release sites. To capture synaptic vesicle exocytosis at cultured mouse hippocampal synapses, we induced single action potentials by electrical field stimulation, then subjected neurons to high-pressure freezing to examine their morphology by electron microscopy. During synchronous release, multiple vesicles can fuse at a single active zone. Fusions during synchronous release are distributed throughout the active zone, whereas fusions during asynchronous release are biased toward the center of the active zone. After stimulation, the total number of docked vesicles across all synapses decreases by ~40%. Within 14 ms, new vesicles are recruited and fully replenish the docked pool, but this docking is transient and they either undock or fuse within 100 ms. These results demonstrate that the recruitment of synaptic vesicles to release sites is rapid and reversible.
Assuntos
Exocitose/fisiologia , Neurônios/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Células Cultivadas , Feminino , Hipocampo/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Vesículas Sinápticas/ultraestruturaRESUMO
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Assuntos
Anquirinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caseína Quinase Idelta/metabolismo , Núcleo Celular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Transcrição Gênica , Animais , Anquirinas/genética , Axônios/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Caseína Quinase Idelta/genética , Núcleo Celular/genética , Fosfoproteínas Fosfatases/genética , Sinapses/fisiologiaRESUMO
Eisosomes are membrane furrows at the cell surface of yeast that have been shown to function in two seemingly distinct pathways, membrane stress response and regulation of nutrient transporters. We found that many stress conditions affect both of these pathways by changing plasma membrane tension and thus the morphology and composition of eisosomes. For example, alkaline stress causes swelling of the cell and an endocytic response, which together increase membrane tension, thereby flattening the eisosomes. The flattened eisosomes affect membrane stress pathways and release nutrient transporters, which aids in their down-regulation. In contrast, glucose starvation or hyperosmotic shock causes cell shrinking, which results in membrane slack and the deepening of eisosomes. Deepened eisosomes are able to trap nutrient transporters and protect them from rapid endocytosis. Therefore, eisosomes seem to coordinate the regulation of both membrane tension and nutrient transporter stability.
Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Nucleotídeos/genética , Fosfoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Pressão Osmótica , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sorbitol/farmacologia , Tensão SuperficialRESUMO
The structural features of a synapse help determine its function. Synapses are extremely small and tightly packed with vesicles and other organelles. Visualizing synaptic structure requires imaging by electron microscopy, and the features in micrographs must be quantified, a process called morphometry. Three parameters are typically assessed from each specimen: (1) the sizes of individual vesicles and organelles; (2) the absolute number and densities of organelles; and (3) distances between organelles and key features at synapses, such as active zone membranes and dense projections. For data to be meaningful, the analysis must be repeated from hundreds to thousands of images from several biological replicates, a daunting task. Here we report a custom computer program to analyze key structural features of synapses: SynapsEM. In short, we developed ImageJ/Fiji macros to record x,y-coordinates of segmented structures. The coordinates are then exported as text files. Independent investigators can reload the images and text files to reexamine the segmentation using ImageJ. The Matlab program then calculates and reports key synaptic parameters from the coordinates. Since the values are calculated from coordinates, rather than measured from each micrograph, other parameters such as locations of docked vesicles relative to the center of an active zone can be extracted in Matlab by additional scripting. Thus, this program can accelerate the morphometry of synapses and promote a more comprehensive analysis of synaptic ultrastructure.
RESUMO
Synapse formation defines neuronal connectivity and is thus essential for neuronal circuit assembly. Trans-synaptic interactions of cell adhesion molecules are thought to induce synapse assembly. Here we demonstrate that a recently discovered and conserved short form of neurexin, γ-neurexin, which lacks canonical extracellular domains, is nonetheless sufficient to promote presynaptic assembly in the nematode C. elegans. γ- but not α-neurexin is required for assembling active zone components, recruiting synaptic vesicles, and clustering calcium channels at release sites to promote evoked synaptic transmission. Furthermore, we find that neurexin functions in parallel with the transmembrane receptor Frizzled, as the absence of both proteins leads to an enhanced phenotype-the loss of most synapses. Frizzled's pro-synaptogenic function is independent of its ligand, Wnt. Wnt binding instead eliminates synapses by inducing Frizzled's endocytosis and the downregulation of neurexin. These results reveal how pro- and anti-synaptogenic factors converge to precisely sculpt circuit formation in vivo.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Receptores Frizzled/metabolismo , Neurogênese/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Caenorhabditis elegans , Endocitose/fisiologia , Neurônios Motores/metabolismo , Isoformas de ProteínasRESUMO
Ultrafast endocytosis generates vesicles from the plasma membrane as quickly as 50 ms in hippocampal neurons following synaptic vesicle fusion. The molecular mechanism underlying the rapid maturation of these endocytic pits is not known. Here we demonstrate that synaptojanin-1, and its partner endophilin-A, function in ultrafast endocytosis. In the absence of synaptojanin or endophilin, the membrane is rapidly invaginated, but pits do not become constricted at the base. The 5-phosphatase activity of synaptojanin is involved in formation of the neck, but 4-phosphatase is not required. Nevertheless, these pits are eventually cleaved into vesicles; within a 30-s interval, synaptic endosomes form and are resolved by clathrin-mediated budding. Then synaptojanin and endophilin function at a second step to aid with the removal of clathrin coats from the regenerated vesicles. These data together suggest that synaptojanin and endophilin can mediate membrane remodeling on a millisecond timescale during ultrafast endocytosis.