Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e34648, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157365

RESUMO

Dissimilar metal combinations are frequently employed in the power generation and nuclear industries. Where stainless steel piping systems are connected to pressure vessels made of low-alloy steel, the subsystems of liquid rocket engines also have different, dissimilar material combinations. Dissimilar welding plays a vital role in ensuring the integrity, performance, and reliability of components and structures operating in cryogenic environments, in this study, plates of AISI 316L and AISI 321, each 5 mm thick, were successfully joined using the pulsed current gas tungsten arc welding (PCGTAW) technique with optimized process parameters. These weld joints are mostly present in rocket engines subjected to a cryogenic environment. Due to the low temperature environment, the metallurgical properties of these joints change, which affects their mechanical properties. As it is a structural part, PCGTAW welding is most common method for joining this kind of material. In this work, Microstructural analysis of the weldment revealed a combination of vermicular, lacy, and acicular ferrite morphologies in the fusion zone at the root, mid, and crown locations. Furthermore, no solidification cracking was detected in the weldments based on the optical micrograph and SEM results. Intergranular corrosion (IGC) testing indicated the absence of a ditch structure, suggesting that the heat-affected zone (HAZ) on both sides of the weld joint was not being susceptible to sensitization. However, the HAZ of the AISI 316L side exhibited coarser grains compared to AISI 321. Analysis of tensile properties revealed a significant influence of the testing environment on the tensile strength of the dissimilar welded joints. At room temperature, the average ultimate tensile strength (UTS) was measured as 621 MPa. Remarkably, at cryogenic conditions, the average tensile properties significantly increased to 1319 MPa. Microhardness analysis showed the highest hardness associated with the AISI 321 side. The fusion zone exhibited a large deviation in the hardness profile (205 ± 10 HV), with the highest average hardness observed in the middle part of the weld. However, the hot cracking behavior of the weld was investigated by using a suutula diagram at various locations of the weld. The investigation revealed that the Creq/Nieq ratio exceeded the critical threshold value, effectively diminishing the propensity for hot cracking in the fusion zone. Overall, these findings underscore the effectiveness of the PCGTAW technique in joining dissimilar materials, as well as the importance of microstructural and mechanical property evaluations, especially under extreme operating conditions such as cryogenic temperatures. Paraphrase.

2.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764401

RESUMO

Cycloarene molecules are benzene-ring-based polycyclic aromatic hydrocarbons that have been fused in a circular manner and are surrounded by carbon-hydrogen bonds that point inward. Due to their magnetic, geometric, and electronic characteristics and superaromaticity, these polycyclic aromatics have received attention in a number of studies. The kekulene molecule is a cyclically organized benzene ring in the shape of a doughnut and is the very first example of such a conjugated macrocyclic compound. Due to its structural characteristics and molecular characterizations, it serves as a great model for theoretical research involving the investigation of π electron conjugation circuits. Therefore, in order to unravel their novel electrical and molecular characteristics and foresee potential applications, the characterization of such components is crucial. In our current research, we describe two unique series of enormous polycyclic molecules made from the extensively studied base kekulene molecule, utilizing the essential graph-theoretical tools to identify their structural characterization via topological quantities. Rectangular kekulene Type-I and rectangular kekulene Type-II structures were obtained from base kekulene molecules arranged in a rectangular fashion. We also employ two subcases for each Type and, for all of these, we derived ten topological indices. We can investigate the physiochemical characteristics of rectangular kekulenes using these topological indices.

3.
Sci Rep ; 8(1): 14159, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242177

RESUMO

In this work, we study the spontaneous spreading of water droplets immersed in oil and report an unexpectedly slow kinetic regime not described by previous spreading models. We can quantitatively describe the observed regime crossover and spreading rate in the late kinetic regime with an analytical model considering the presence of periodic metastable states induced by nanoscale topographic features (characteristic area ~4 nm2, height ~1 nm) observed via atomic force microscopy. The analytical model proposed in this work reveals that certain combinations of droplet volume and nanoscale topographic parameters can significantly hinder or promote wetting processes such as spreading, wicking, and imbibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA