RESUMO
Hydrophobicity plays a pivotal role in mitigating surface fouling, corrosion, and icing in critical marine and aerospace environments. By employing ultrafast laser texturing, the characteristic properties of a material's surface can be modified. This work investigates the potential of an advanced ultrafast laser texturing manufacturing process to enhance the hydrophobicity of aluminium alloy 7075. The surface properties were characterized using goniometry, 3D profilometry, SEM, and XPS analysis. The findings from this study show that the laser process parameters play a crucial role in the manufacturing of the required surface structures. Numerical optimization with response surface optimization was conducted to maximize the contact angle on these surfaces. The maximum water contact angle achieved was 142º, with an average height roughness (Sa) of 0.87 ± 0.075 µm, maximum height roughness (Sz) of 19.4 ± 2.12 µm, and texture aspect ratio of 0.042. This sample was manufactured with the process parameters of 3W laser power, 0.08 mm hatch distance, and a 3 mm/s scan speed. This study highlights the importance of laser process parameters in the manufacturing of the required surface structures and presents a parametric modeling approach that can be used to optimize the laser process parameters to obtain a specific surface morphology and hydrophobicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s00170-024-12971-8.
RESUMO
Titanium (Ti)-doped hematite (α-Fe2O3) films were grown in oxygen-depleted condition by using the spray pyrolysis technique. The impact of post-deposition annealing in oxygen-rich condition on both the conductivity and water splitting efficiency was investigated. The X-ray diffraction pattern revealed that the films are of rhombohedral α-Fe2O3 structure and dominantly directed along (012). The as-grown films were found to be highly conductive with electrons as the majority charge carriers (n-type), a carrier concentration of 1.09×1020 cm-3, and a resistivity of 5.9×10-2 Ω-cm. The conductivity of the films were reduced upon post-deposition annealing. The origin of the conductivity was attributed firstly to Ti4+ substituting Fe3+ and secondly to the ionized oxygen vacancies (VO) in the crystal lattice of hematite. Upon annealing the samples in oxygen-rich condition, VO slowly depleted and the conductivity reduced. The photocurrent of the as-grown samples was found to be 3.4 mA/cm-2 at 1.23 V vs. RHE. The solar-to-hydrogen efficiency for the as-grown sample was calculated to be 4.18% at 1.23 V vs. RHE. The photocurrents were found to be significantly stable in aqueous environment. A linear relationship between conductivity and water-splitting efficiency was established.