Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(49)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39191271

RESUMO

The dynamics of a driven superconducting vortex lattice in a two-dimensional (2D) periodic potential of square symmetry is studied using Brownian dynamics simulations. The range and strength of the vortex-substrate interaction are taken to be of the same order as that of the vortex-vortex interaction. The matching effect in a driven vortex lattice in the presence of a periodic array of pinning centers refers to the enhanced resistance to the vortex lattice motion when the ratio of the number of vortices to the number of pinning centers (called the filling fraction) takes simple fractional values. In particular, one expects a pronounced matching effect when the filling fraction is one. Contrary to this expectation, a drop in the vortex lattice mobility is observed as the filling fraction is increased from value one. This anti-matching effect can be understood in terms of the structural change in the vortex lattice as the filling fraction is varied. The dip observed in vortex mobility as a function of temperature when the filling fraction equals one (Joseph T 2020PhysicaA556124737), is studied for other values of filling above and below one. The behavior is found to persist for other fillings as well and is associated with the melting of the vortex lattice. The temperature at which the lattice melts is found to increase with drive and explains the shift in the temperature at which mobility is a minimum, locally.

2.
PLoS One ; 19(4): e0297738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626108

RESUMO

The nucleus preserves the genomic DNA of eukaryotic organisms and maintains the integrity of the cell by regulating the transport of molecules across the nuclear membrane. It is hitherto assumed that small molecules having a size below the passive permeability limit are allowed to diffuse freely to the nucleus while the transport of larger molecules is regulated via an active mechanism involving energy. Here we report on the kinetics of nuclear import and export of dextran molecules having a size below the passive permeability limit. The studies carried out using time-lapse confocal fluorescence microscopy show a clear deviation from the passive diffusion model. In particular, it is observed that the steady-state concentration of dextran molecules inside the nucleus is consistently less than the concentration outside, in contradiction to the predictions of the passive diffusion model. Detailed analysis and modeling of the transport show that the nuclear export rates significantly differ from the import rates, and the difference in rates is dependent on the size of the molecules. The nuclear export rates are further confirmed by an independent experimental study where we observe the diffusion of dextran molecules from the nucleus directly. Our experiments and transport model would suggest that the nucleus actively rejects exogenous macromolecules even below the passive permeability limit. This result can have a significant impact on biomedical research, especially in areas related to targeted drug delivery and gene therapy.


Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Dextranos/metabolismo , Transporte Ativo do Núcleo Celular , Difusão
3.
Phys Rev E ; 109(3-1): 034121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632813

RESUMO

An information engine based on a two-level system in contact with a thermal reservoir is studied analytically. The model incorporates delay time between the measurement of the state of the system and the feedback. The engine efficiency and work extracted per cycle are studied as a function of delay time and energy spacing between the two levels. It is found that the range of delay time over which one can extract work from the information engine increases with temperature. For delay times comparable to the relaxation time, efficiency and work per cycle are maxima when k_{B}T≈2U_{0}, the energy difference between the levels. The generalized Jarzynski equality and the generalized integral fluctuation theorem are explicitly verified for the model. The results from the model are compared with the simulation results for a feedback engine based on a particle moving in a one-dimensional square potential. The variation of efficiency, work per cycle, and efficacy with the delay time is compared using relaxation time in the two-level model as the fitting parameter, leading to a good fit.

4.
Phys Rev E ; 107(3-1): 034116, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073011

RESUMO

Motion of a driven particle in a two-dimensional (2D) periodic potential of square symmetry is studied by means of Brownian dynamics simulations. The average drift velocity and long time diffusion coefficients are obtained as a function of driving force and temperature. For driving forces above the critical depinning force, a reduction of drift velocity is observed as temperature is increased. The drift velocity reaches a minimum for temperatures at which k_{B}T is of the order of the barrier height of the substrate potential and then increases and saturates to the value of drift velocity for the substrate free case. Depending on the driving force, the drop in drift velocity can be as large as 36% of its value at low temperatures. While this phenomenon is observed in 2D for different types of substrate potentials studied and for various drive directions, studies using the exact result show no such dip in drift velocity in one dimension (1D). As in the case of 1D, a peak is observed in the longitudinal diffusion coefficient as the driving force is varied at a fixed temperature. But unlike in 1D, the location of the peak is temperature dependent. Approximate analytical expressions for the average drift velocity and the longitudinal diffusion coefficient are formulated using the exact results in 1D by finding a temperature dependent effective 1D potential to model the motion in the presence of a 2D substrate. This approximate analysis is successful in qualitatively predicting the observations.

5.
Phys Rev E ; 106(5-1): 054146, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559401

RESUMO

A Brownian particle moving in a staircaselike potential with feedback control offers a way to implement Maxwell's demon. An experimental demonstration of such a system using sinusoidal periodic potential carried out by Toyabe et al. [Nat. Phys. 6, 988 (2010)1745-247310.1038/nphys1821] has shown that information about the particle's position can be converted to useful work. In this paper, we carry out a numerical study of a similar system using Brownian dynamics simulation. A Brownian particle moving in a periodic potential under the action of a constant driving force is made to move against the drive by measuring the position of the particle and effecting feedback control by altering potential. The work is extracted during the potential change and from the movement of the particle against the external drive. These work extractions come at the cost of information gathered during the measurement. Efficiency and work extracted per cycle of this information engine are optimized by varying control parameters as well as feedback protocols. Both these quantities are found to crucially depend on the amplitude of the periodic potential as well as the width of the region over which the particle is searched for during the measurement phase. For the case when potential flip (i.e., changing the phase of the potential by 180^{∘}) is used as the feedback mechanism, we argue that the square potential offers a more efficient information-to-work conversion. The control over the numerical parameters and averaging over large number of trial runs allow one to study the nonequilibrium work relations with feedback for this process with precision. It is seen that the generalized integral fluctuation theorem for error-free measurements holds to within the accuracy of the simulation.

6.
Phys Rev E ; 103(2-1): 022131, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735980

RESUMO

Maxwell refrigerator as a device that can transfer heat from a cold to hot temperature reservoir making use of information reservoir was introduced by Mandal et al. [Phys. Rev. Lett. 111, 030602 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.030602]. The model has a two-state demon and a bit stream interacting with two thermal reservoirs simultaneously. We work out a simpler version of the refrigerator where the demon and bit system interact with the reservoirs separately and for a duration long enough to establish equilibrium. The efficiency, η, of the device when working as an engine as well as the coefficient of performance (COP) when working as a refrigerator are calculated. It is shown that the maximum efficiency matches that of a Carnot engine/refrigerator working between the same temperatures, as expected. The COP, when cooling per cycle is a maximum, decreases as 1/T_{h} when T_{h}>T_{c}≫ΔE (k_{B}=1), where T_{h} and T_{c} are the temperatures of the hot and cold reservoirs, respectively, and ΔE is the level spacing of the demon. η, when work per cycle is a maximum, is found to be T_{h}/0.779+T_{h} when T_{c}≪ΔE and T_{h}≫ΔE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA