Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Neurology ; 102(2): e207945, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165337

RESUMO

BACKGROUND AND OBJECTIVES: Heterozygous variants in RAR-related orphan receptor B (RORB) have recently been associated with susceptibility to idiopathic generalized epilepsy. However, few reports have been published so far describing pathogenic variants of this gene in patients with epilepsy and intellectual disability (ID). In this study, we aimed to delineate the epilepsy phenotype associated with RORB pathogenic variants and to provide arguments in favor of the pathogenicity of variants. METHODS: Through an international collaboration, we analyzed seizure characteristics, EEG data, and genotypes of a cohort of patients with heterozygous variants in RORB. To gain insight into disease mechanisms, we performed ex vivo cortical electroporation in mouse embryos of 5 selected variants, 2 truncating and 3 missense, and evaluated on expression and quantified changes in axonal morphology. RESULTS: We identified 35 patients (17 male, median age 10 years, range 2.5-23 years) carrying 32 different heterozygous variants in RORB, including 28 single-nucleotide variants or small insertions/deletions (12 missense, 12 frameshift or nonsense, 2 splice-site variants, and 2 in-frame deletions), and 4 microdeletions; de novo in 18 patients and inherited in 10. Seizures were reported in 31/35 (89%) patients, with a median age at onset of 3 years (range 4 months-12 years). Absence seizures occurred in 25 patients with epilepsy (81%). Nineteen patients experienced a single seizure type: absences, myoclonic absences, or absences with eyelid myoclonia and focal seizures. Nine patients had absence seizures combined with other generalized seizure types. One patient had presented with absences associated with photosensitive occipital seizures. Three other patients had generalized tonic-clonic seizures without absences. ID of variable degree was observed in 85% of the patients. Expression studies in cultured neurons showed shorter axons for the 5 tested variants, both truncating and missense variants, supporting an impaired protein function. DISCUSSION: In most patients, the phenotype of the RORB-related disorder associates absence seizures with mild-to-moderate ID. In silico and in vitro evaluation of the variants in our cohort, including axonal morphogenetic experiments in cultured neurons, supports their pathogenicity, showing a hypomorphic effect.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Deficiência Intelectual , Humanos , Masculino , Animais , Camundongos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Lactente , Convulsões , Fenótipo , Epilepsia Tipo Ausência/genética , Epilepsia Generalizada/genética , Genótipo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares
2.
medRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398376

RESUMO

Purpose: De novo variants in CUL3 (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. Methods: Genetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. Results: We assembled a cohort of 35 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro . Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells. Conclusion: Our study further refines the clinical and mutational spectrum of CUL3 -associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism.

3.
Eur J Hum Genet ; 31(7): 784-792, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012328

RESUMO

Pediatric Moyamoya Angiopathy (MMA) is a progressive intracranial occlusive arteriopathy that represents a leading cause of transient ischemic attacks and strokes in childhood. Despite this, up to now no large, exclusively pediatric MMA cohort has been subjected to systematic genetic investigation. In this study, we performed molecular karyotyping, exome sequencing and automated structural assessment of missense variants on a series of 88 pediatric MMA patients and correlated genetic, angiographic and clinical (stroke burden) findings. The two largest subgroups in our cohort consisted of RNF213 and neurofibromatosis type 1 (NF1) patients. While deleterious RNF213 variants were associated with a severe MMA clinical course with early symptom onset, frequent posterior cerebral artery involvement and higher stroke rates in multiple territories, NF1 patients had a similar infarct burden compared to non-NF1 individuals and were often diagnosed incidentally during routine MRIs. Additionally, we found that MMA-associated RNF213 variants have lower predicted functional impact compared to those associated with aortic disease. We also raise the question of MMA as a feature of recurrent as well as rare chromosomal imbalances and further support the possible association of MMA with STAT3 deficiency. In conclusion, we provide a comprehensive characterization at the genetic and clinical level of a large exclusively pediatric MMA population. Due to the clinical differences found across genetic subgroups, we propose genetic testing for risk stratification as part of the routine assessment of pediatric MMA patients.


Assuntos
Doença de Moyamoya , Neurofibromatose 1 , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/genética , Acidente Vascular Cerebral/genética , Mutação de Sentido Incorreto , Testes Genéticos , Ubiquitina-Proteína Ligases/genética , Adenosina Trifosfatases/genética
4.
Mol Genet Genomic Med ; 11(5): e2148, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36785910

RESUMO

BACKGROUND: As the technology of next generation sequencing rapidly develops and costs are constantly reduced, the clinical availability of whole genome sequencing (WGS) increases. Thereby, it remains unclear what exact advantage WGS offers in comparison to whole exome sequencing (WES) for the diagnosis of genetic diseases using current technologies. METHODS: Trio-WGS was conducted for 20 patients with developmental or epileptic encephalopathies who remained undiagnosed after WES and chromosomal microarray analysis. RESULTS: A diagnosis was reached for four patients (20%). However, retrospectively all pathogenic variants could have been detected in a WES analysis conducted with today's methods and knowledge. CONCLUSION: The additional diagnostic yield of WGS versus WES is currently largely explained by new scientific insights and the general technological progress. Nevertheless, it is noteworthy that whole genome sequencing has greater potential for the analysis of small copy number and copy number neutral variants not seen with WES as well as variants in noncoding regions, especially as potentially more knowledge of the function of noncoding regions arises. We, therefore, conclude that even though today the added value of WGS versus WES seems to be limited, it may increase substantially in the future.


Assuntos
Encefalopatias , Genoma Humano , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Sequenciamento Completo do Genoma
5.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586412

RESUMO

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Regulação da Expressão Gênica , Face , Proteínas Nucleares/genética , Histona Desmetilases/genética
6.
Eur J Hum Genet ; 31(8): 953-961, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36550190

RESUMO

Next generation sequencing (NGS) can detect carrier status for rare recessive disorders, informing couples about their reproductive risk. The recent ACMG recommendations support offering NGS-based carrier screening (NGS-CS) in an ethnic and population-neutral manner for all genes that have a carrier frequency >1/200 (based on GnomAD). To evaluate current challenges for NGS-CS, we focused on the ciliopathies, a well-studied group of rare recessive disorders. We analyzed 118 ciliopathy genes by whole exome sequencing in ~400 healthy local individuals and ~1000 individuals from the UK1958-birth cohort. We found 20% of healthy individuals (1% of couples) to be carriers of reportable variants in a ciliopathy gene, while 50% (4% of couples) carry variants of uncertain significance (VUS). This large proportion of VUS is partly explained by the limited utility of the ACMG/AMP variant-interpretation criteria in healthy individuals, where phenotypic match or segregation criteria cannot be used. Most missense variants are thus classified as VUS and not reported, which reduces the negative predictive value of the screening test. We show how gene-specific variation patterns and structural protein information can help prioritize variants most likely to be disease-causing, for (future) functional assays. Even when considering only strictly pathogenic variants, the observed carrier frequency is substantially higher than expected based on estimated disease prevalence, challenging the 1/200 carrier frequency cut-off proposed for choice of genes to screen. Given the challenges linked to variant interpretation in healthy individuals and the uncertainties about true carrier frequencies, genetic counseling must clearly disclose these limitations of NGS-CS.


Assuntos
Ciliopatias , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aconselhamento Genético , Sequenciamento do Exoma , Ciliopatias/diagnóstico , Ciliopatias/genética , Triagem de Portadores Genéticos
7.
HGG Adv ; 4(1): 100157, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36408368

RESUMO

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtorno do Espectro Autista/genética , Drosophila melanogaster/genética , Transtornos do Neurodesenvolvimento/genética , Análise por Conglomerados , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas de Drosophila/genética
8.
NPJ Genom Med ; 7(1): 45, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906228

RESUMO

The magnitude of clinical utility of preconception expanded carrier screening (ECS) concerning its potential to reduce the risk of affected offspring is unknown. Since neurodevelopmental disorders (NDDs) in their offspring is a major concern of parents-to-be, we addressed the question of residual risk by assessing the risk-reduction potential for NDDs in a retrospective study investigating ECS with different criteria for gene selection and definition of pathogenicity. We used exome sequencing data from 700 parents of children with NDDs and blindly screened for carrier-alleles in up to 3046 recessive/X-linked genes. Depending on variant pathogenicity thresholds and gene content, NDD-risk-reduction potential was up to 43.5% in consanguineous, and 5.1% in nonconsanguineous couples. The risk-reduction-potential was compromised by underestimation of pathogenicity of missense variants (false-negative-rate 4.6%), inherited copy-number variants and compound heterozygosity of one inherited and one de novo variant (0.9% each). Adherence to the ACMG recommendations of restricting ECS to high-frequency genes in nonconsanguineous couples would more than halve the detectable inherited NDD-risk. Thus, for optimized clinical utility of ECS, screening in recessive/X-linked genes regardless of their frequency (ACMG Tier-4) and sensible pathogenicity thresholds should be considered for all couples seeking ECS.

9.
Hum Mutat ; 43(10): 1377-1395, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35730652

RESUMO

Mitogen-activated protein 3 kinase 7 (MAP3K7) encodes the ubiquitously expressed transforming growth factor ß-activated kinase 1, which plays a crucial role in many cellular processes. Mutationsin the MAP3K7 gene have been linked to two distinct disorders: frontometaphyseal dysplasia type 2 (FMD2) and cardiospondylocarpofacial syndrome (CSCF). The fact that different mutations can induce two distinct phenotypes suggests a phenotype/genotype correlation, but no side-by-side comparison has been done thus far to confirm this. Here, we significantly expand the cohort and the description of clinical phenotypes for patients with CSCF and FMD2 who carry mutations in MAP3K7. Our findings support that in contrast to FMD2-causing mutations, CSCF-causing mutations in MAP3K7 have a loss-of-function effect. Additionally, patients with pathogenic mutations in MAP3K7 are at risk for (severe) cardiac disease, have symptoms associated with connective tissue disease, and we show overlap in clinical phenotypes of CSCF with Noonan syndrome (NS). Together, we confirm a molecular fingerprint of FMD2- versus CSCF-causing MAP3K7 mutations and conclude that mutations in MAP3K7 should be considered in the differential diagnosis of patients with syndromic congenital cardiac defects and/or cardiomyopathy, syndromic connective tissue disorders, and in the differential diagnosis of NS.


Assuntos
Anormalidades Múltiplas , Síndrome de Noonan , Anormalidades Múltiplas/genética , Genótipo , Perda Auditiva Bilateral , Humanos , Insuficiência da Valva Mitral , Mutação , Síndrome de Noonan/genética , Osteosclerose , Fenótipo
10.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34656997

RESUMO

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismo
12.
Genet Med ; 23(10): 1952-1960, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113005

RESUMO

PURPOSE: Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. METHODS: We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. RESULTS: Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). CONCLUSION: Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.


Assuntos
Tetralogia de Fallot , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Predisposição Genética para Doença , Células HEK293 , Humanos , Camundongos , Tetralogia de Fallot/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Sequenciamento do Exoma
13.
Am J Med Genet A ; 185(8): 2546-2560, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34075687

RESUMO

Ogden syndrome is a rare lethal X-linked recessive disorder caused by a recurrent missense variant (Ser37Pro) in the NAA10 gene, encoding the catalytic subunit of the N-terminal acetyltransferase A complex (NatA). So far eight boys of two different families have been described in the literature, all presenting the distinctive and recognizable phenotype, which includes mostly postnatal growth retardation, global severe developmental delay, characteristic craniofacial features, and structural cardiac anomalies and/or arrhythmias. Here, we report the ninth case of Ogden syndrome with an independent recurrence of the Ser37Pro variant. We were able to follow the clinical course of the affected boy and delineate the evolving phenotype from his birth until his unfortunate death at 7 months. We could confirm the associated phenotype as well as the natural history of this severe disease. By describing new presenting features, we are further expanding the clinical spectrum associated with Ogden syndrome and review other phenotypes associated with NAA10 variants.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Mutação , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Adulto , Análise Mutacional de DNA , Eletroencefalografia , Feminino , Genótipo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Gravidez , Diagnóstico Pré-Natal , Radiografia , Síndrome
14.
Hum Genet ; 140(7): 1109-1120, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33944996

RESUMO

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


Assuntos
DNA Helicases/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Domínio Catalítico , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/genética , Feminino , Genes Dominantes , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Adulto Jovem
15.
JAMA Ophthalmol ; 139(7): 691-700, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34014271

RESUMO

IMPORTANCE: Identification of geographic population-based differences in genotype and phenotype heterogeneity are important for targeted and patient-specific diagnosis and treatment, counseling, and screening strategies. OBJECTIVE: To report disease-causing variants and their detailed phenotype in patients with bilateral congenital cataract from a single center in Switzerland and thereby draw a genetic map and perform a genotype-phenotype comparison of this cohort. DESIGN, SETTING, AND PARTICIPANTS: This clinical and molecular-genetic cohort study took place through the collaboration of the Department of Ophthalmology at the University Hospital Zurich and the Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland. Thirty-seven patients from 25 families with different types of bilateral congenital cataract were included. All participating family members received a comprehensive eye examination. Whole exome sequencing was performed in the index patients, followed by a filtering process to detect possible disease-associated variants in genes previously described in association with congenital cataract. Probable disease-causing variants were confirmed by Sanger sequencing in available family members. All data were collected from January 2018 to June 2020, and the molecular-genetic analyses were performed from January 2019 to July 2020. MAIN OUTCOMES AND MEASURES: Identification of the underlying genetic causes of bilateral congenital cataract, including novel disease-causing variants and phenotype correlation. RESULTS: Among the 37 patients (18 [49%] male and 19 [51%] female; mean [SD] age, 17.3 [15.9] years) from 25 families, pathogenic variants were detected in 20 families (80% detection rate), which included 13 novel variants in the following genes: BCOR, COL4A1, CRYBA2, CRYBB2, CRYGC, CRYGS, GJA3, MAF, NHS, and WFS1. Putative disease-causing variants were identified in 14 of 20 families (70%) as isolated cases and in 6 of 20 families (30%) with syndromic cases. A recessive variant in the CRYBB2 gene in a consanguineous family with 2 affected siblings showing a nuclear and sutural cataract was reported in contrast to previously published reports. In addition, the effect on splicing in a minigene assay of a novel splice site variant in the NHS gene (c.[719-2A>G]) supported the pathogenicity of this variant. CONCLUSIONS AND RELEVANCE: This study emphasizes the importance of genetic testing of congenital cataracts. Known dominant genes need to be considered for recessive inheritance patterns. Syndromic types of cataract may be underdiagnosed in patients with mild systemic features.


Assuntos
Catarata , Catarata/congênito , Estudos de Coortes , Feminino , Testes Genéticos , Humanos , Masculino , Linhagem , Suíça/epidemiologia
16.
Epilepsia ; 62(7): e103-e109, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34041744

RESUMO

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia Generalizada/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/etiologia , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/etiologia , Exoma/genética , Feminino , Variação Genética , Humanos , Lactente , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Masculino , Mutação/genética , Fenótipo , Estado Epiléptico/diagnóstico , Estado Epiléptico/etiologia , Estado Epiléptico/genética , Adulto Jovem
17.
Genet Med ; 23(8): 1474-1483, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33941880

RESUMO

PURPOSE: Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf-Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. METHODS: We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. RESULTS: The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2's folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. CONCLUSION: NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch-Steindl syndrome after the delineators of this phenotype.


Assuntos
Histona-Lisina N-Metiltransferase , Síndrome de Wolf-Hirschhorn , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Metilação , Mutação de Sentido Incorreto , Fenótipo , Gravidez
18.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872655

RESUMO

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Assuntos
Antígenos de Neoplasias/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Doenças da Imunodeficiência Primária/imunologia , Viroses/genética , Antígenos de Neoplasias/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/imunologia , Masculino , Doenças da Imunodeficiência Primária/diagnóstico por imagem , Doenças da Imunodeficiência Primária/genética , Viroses/diagnóstico por imagem , Viroses/imunologia
20.
Eur J Hum Genet ; 29(5): 808-815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547425

RESUMO

Perinatal mortality is a heavy burden for both affected parents and physicians. However, the underlying genetic causes have not been sufficiently investigated and most cases remain without diagnosis. This impedes appropriate counseling or therapy. We describe four affected children of two unrelated families with cardiomyopathy, hydrops fetalis, or cystic hygroma that all deceased perinatally. In the four patients, we found the following homozygous loss of function (LoF) variants in SLC30A5 NM_022902.4:c.832_836del p.(Ile278Phefs*33) and NM_022902.4:c.1981_1982del p.(His661Tyrfs*10). Knockout of SLC30A5 has previously been shown a cardiac phenotype in mouse models and no homozygous LoF variants in SLC30A5 are currently described in gnomAD. Taken together, we present SLC30A5 as a new gene for a severe and perinatally lethal form of cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Proteínas de Transporte de Cátions/genética , Mutação com Perda de Função , Adulto , Cardiomiopatias/patologia , Evolução Fatal , Feminino , Homozigoto , Humanos , Recém-Nascido , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA