Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 756: 110000, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621442

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive degeneration of motor neurons, resulting in respiratory failure and mortality within 3-5 years. Mutations in the Angiogenin (ANG) cause loss of ribonucleolytic and nuclear translocation activities, contributing to ALS pathogenesis. This study focused on investigating two uncharacterized ANG mutations, T11S and R122H, newly identified in the Project Mine consortium. Using extensive computational analysis, including structural modeling and microsecond-timescale molecular dynamics (MD) simulations, we observed conformational changes in the catalytic residue His114 of ANG induced by T11S and R122H mutations. These alterations impaired ribonucleolytic activity, as inferred through molecular docking and binding free energy calculations. Gibbs free energy landscape and residue-residue interaction network analysis further supported our findings, revealing the energetic states and allosteric pathway from the mutated site to His114. Additionally, we assessed the binding of NCI-65828, an inhibitor of ribonucleolytic activity of ANG, and found reduced effectiveness in binding to T11S and R122H mutants when His114 assumed a non-native conformation. This highlights the crucial role of His114 and its association with ALS. Elucidating the relationship between physical structure and functional dynamics of frequently mutated ANG mutants is essential for understanding ALS pathogenesis and developing more effective therapeutic interventions.


Assuntos
Esclerose Lateral Amiotrófica , Simulação de Dinâmica Molecular , Ribonuclease Pancreático , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Mutação com Perda de Função , Simulação de Acoplamento Molecular , Mutação , Conformação Proteica , Termodinâmica
2.
ACS Omega ; 8(41): 37852-37863, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867647

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus possessing a spike (S) protein that facilitates the entry of the virus into human cells. The emergence of highly transmissible and fit SARS-CoV-2 variants has been driven by the positive selection of mutations within the S-protein. Notable among these variants are alpha, beta, gamma, delta, and omicron (BA.1), with the latter contributing to significant global health challenges and impacting populations worldwide. Recently, a novel subvariant of BA.1, named BF.7, has surfaced, purportedly exhibiting elevated transmissibility and infectivity rates. In order to comprehend and compare the transmissibility and disease progression characteristics of distinct SARS-CoV-2 variants, we performed an extensive comparative analysis utilizing all-atom molecular dynamics (MD) simulations (in triplicate) to investigate the structural, dynamic, and binding features of BA.1, BA.4/5, and BF.7. Our simulation findings, energetic analysis, and assessment of physicochemical properties collectively illuminate the dominance of the BA.1 variant over the others, a trend that is further substantiated by the sustained global prevalence of BA.1 relative to BA.4/5 and BF.7. Additionally, our simulation results align well with the reported cryoelectron microscopy (cryo-EM) structural data and epidemiological characteristics obtained from the Global Initiative on Sharing All Influenza Data (GISAID). This study presents a comprehensive comparative elucidation of the critical structural, dynamic, and binding attributes of these variants, providing insights into the predominance of BA.1 and its propensity to continuously generate numerous novel subvariants.

4.
Diseases ; 10(4)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36547200

RESUMO

Cancers are the leading cause of death, causing around 10 million deaths annually by 2020. The most common cancers are those affecting the breast, lungs, colon, and rectum. However, it has been noted that cancer metastasis is more lethal than just cancer incidence and accounts for more than 90% of cancer deaths. Thus, early detection and prevention of cancer metastasis have the capability to save millions of lives. Finding novel biomarkers and targets for screening, determination of prognosis, targeted therapies, etc., are ways of doing so. In this review, we propose various sialyltransferases and neuraminidases as potential therapeutic targets for the treatment of the most common cancers, along with a few rare ones, on the basis of existing experimental and in silico data. This compilation of available cancer studies aiming at sialyltransferases and neuraminidases will serve as a guide for scientists and researchers working on possible targets for various cancers and will also provide data about the existing drugs which inhibit the action of these enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA