RESUMO
Paraffin wax is a mixture of numerous unbranched hydrocarbons used frequently for various purposes: to improve the shelf life of products containing lipid system and develop more shiny products. However, because of its complex nature, the effect of such molecular structure on the solid phase behavior of lipids is hardly unstated. Hence in our study, we focus on understanding the impact of derivatives of paraffin wax on the lipid system. In the current work, three unbranched derivatives of paraffin wax: Eicosane C (20), Pentacosane C (25) and Triacontane C (30) were selected as additives. These n-alkanes are specifically added to the eutectic mixture of cocoa butter (CB) and coconut oil (CO) (ECB-CO) to observe the effect on thermal, morphological, rheological properties and crystallization kinetics with respect to the carbon chain length. Results from our study illustrate that melting and crystallization temperature, storage modulus and solid fat content (SFC) increases after the addition of 1 wt% of C (20), C (25). In contrast, there is a phase separation for 1 wt% C (30). Further similar study with addition of n-alkanes to pure CB and CO reveals that the interaction of n-alkanes with ECB-CO is dominated by the interaction of n-alkanes with CO instead of CB. Therefore, our findings provide insight into the effect of addition of n-alkanes having different carbon chain length and their respective concentration on crystallization process of CB and CO. This will definitely help to design the processes for products containing such model systems.
RESUMO
The comparative study between the mixing behavior of two binary mixtures of cocoa butter (CB)/tristearin (TS) and cocoa butter (CB)/coconut oil (CO) was investigated by using differential scanning calorimetry (DSC). The DSC profile for CB/TS blends resulted in a monotectic temperature-concentration (T-X) phase diagram, whereas a phase diagram of eutectic type was observed for CB/CO blends at 65 wt % of CO and 35 wt % CB; this suggests that the eutectic crystal can be formed when the saturated fat (blue = CO) is smaller in size compared to monounsaturated fat (orange = CB), whereas, for similar and larger size (red = TS) to CB, phase separation under crystallization is likely to occur (as shown in the graphical abstract). In order to understand the interaction between the binary systems, the profile of the phase diagram was fitted with Bragg-Williams approximation for estimation of the nonideality mixing parameter. Moreover, the morphology of the two different systems by polarized light microscopy (PLM) also depicted the variations in phase behavior by showing a significant change in CB morphology from spherulitic, grainy to granular and needlelike after the addition of TS and CO, respectively. Our findings emphasize the fundamental understanding of the interaction of bulk fat/fat and fat/oil system.