Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105621, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176649

RESUMO

Phenazine-1-carboxylic acid decarboxylase (PhdA) is a prenylated-FMN-dependent (prFMN) enzyme belonging to the UbiD family of decarboxylases. Many UbiD-like enzymes catalyze (de)carboxylation reactions on aromatic rings and conjugated double bonds and are potentially valuable industrial catalysts. We have investigated the mechanism of PhdA using a slow turnover substrate, 2,3-dimethylquinoxaline-5-carboxylic acid (DQCA). Detailed analysis of the pH dependence and solvent deuterium isotope effects associated with the reaction uncovered unusual kinetic behavior. At low substrate concentrations, a substantial inverse solvent isotope effect (SIE) is observed on Vmax/KM of ∼ 0.5 when reaction rates of DQCA in H2O and D2O are compared. Under the same conditions, a normal SIE of 4.15 is measured by internal competition for proton transfer to the product. These apparently contradictory results indicate that the SIE values report on different steps in the mechanism. A proton inventory analysis of the reaction under Vmax/KM and Vmax conditions points to a "medium effect" as the source of the inverse SIE. Molecular dynamics simulations of the effect of D2O on PhdA structure support that D2O reduces the conformational lability of the enzyme and results in a more compact structure, akin to the active, "closed" conformer observed in crystal structures of some UbiD-like enzymes. Consistent with the simulations, PhdA was found to be more stable in D2O and to bind DQCA more tightly, leading to the observed rate enhancement under Vmax/KM conditions.


Assuntos
Carboxiliases , Carboxiliases/química , Isótopos , Cinética , Fenazinas , Prótons , Solventes , Mycobacteriaceae/enzimologia
2.
J Phys Chem Lett ; 14(42): 9490-9499, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37850349

RESUMO

Emerging pathogens are a historic threat to public health and economic stability. Current trial-and-error approaches to identify new therapeutics are often ineffective due to their inefficient exploration of the enormous small molecule design space. Here, we present a data-driven computational framework composed of hybrid evolutionary algorithms for evolving functional groups on existing drugs to improve their binding affinity toward the main protease (Mpro) of SARS-CoV-2. We show that combinations of functional groups and sites are critical to design drugs with improved binding affinity, which can be easily achieved using our framework by exploring a fraction of the available search space. Atomistic simulations and experimental validation elucidate that enhanced and prolonged interactions between functionalized drugs and Mpro residues result in their improved therapeutic value over that of the parental compound. Overall, this novel framework is extremely flexible and has the potential to rapidly design inhibitors for any protein with available crystal structures.


Assuntos
COVID-19 , Humanos , Antivirais/química , Pandemias , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
3.
Biomacromolecules ; 24(9): 4078-4092, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603467

RESUMO

Interactions between amino acids and water play an important role in determining the stability and folding/unfolding, in aqueous solution, of many biological macromolecules, which affects their function. Thus, understanding the molecular-level interactions between water and amino acids is crucial to tune their function in aqueous solutions. Herein, we have developed nonbonded interaction parameters between the coarse-grained (CG) models of 20 amino acids and the one-site CG water model. The nonbonded parameters, represented using the 12-6 Lennard Jones (LJ) potential form, have been optimized using an artificial neural network (ANN)-assisted particle swarm optimization (PSO) (ANN-assisted PSO) method. All-atom (AA) molecular dynamics (MD) simulations of dipeptides in TIP3P water molecules were performed to calculate the Gibbs hydration free energies. The nonbonded force-field (FF) parameters between CG amino acids and the one-site CG water model were developed to accurately reproduce these energies. Furthermore, to test the transferability of these newly developed parameters, we calculated the hydration free energies of the analogues of the amino acid side chains, which showed good agreement with reported experimental data. Additionally, we show the applicability of these models by performing self-assembly simulations of peptide amphiphiles. Overall, these models are transferable and can be used to study the self-assembly of various biomaterials and biomolecules to develop a mechanistic understanding of these processes.


Assuntos
Aminoácidos , Materiais Biocompatíveis , Dipeptídeos , Simulação de Dinâmica Molecular , Água
4.
Chem Sci ; 14(26): 7310-7326, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416719

RESUMO

Accurate 3D structures of membrane proteins are essential for comprehending their mechanisms of action and designing specific ligands to modulate their activities. However, these structures are still uncommon due to the involvement of detergents in the sample preparation. Recently, membrane-active polymers have emerged as an alternative to detergents, but their incompatibility with low pH and divalent cations has hindered their efficacy. Herein, we describe the design, synthesis, characterization, and application of a new class of pH-tunable membrane-active polymers, NCMNP2a-x. The results demonstrated that NCMNP2a-x could be used for high-resolution single-particle cryo-EM structural analysis of AcrB in various pH conditions and can effectively solubilize BcTSPO with the function preserved. Molecular dynamic simulation is consistent with experimental data that shed great insights into the working mechanism of this class of polymers. These results demonstrated that NCMNP2a-x might have broad applications in membrane protein research.

5.
Angew Chem Int Ed Engl ; 62(26): e202303755, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37194941

RESUMO

We report three constitutionally isomeric tetrapeptides, each comprising one glutamic acid (E) residue, one histidine (H) residue, and two lysine (KS ) residues functionalized with side-chain hydrophobic S-aroylthiooxime (SATO) groups. Depending on the order of amino acids, these amphiphilic peptides self-assembled in aqueous solution into different nanostructures:nanoribbons, a mixture of nanotoroids and nanoribbons, or nanocoils. Each nanostructure catalyzed hydrolysis of a model substrate, with the nanocoils exhibiting the greatest rate enhancement and the highest enzymatic efficiency. Coarse-grained molecular dynamics simulations, analyzed with unsupervised machine learning, revealed clusters of H residues in hydrophobic pockets along the outer edge of the nanocoils, providing insight for the observed catalytic rate enhancement. Finally, all three supramolecular nanostructures catalyzed hydrolysis of the l-substrate only when a pair of enantiomeric Boc-l/d-Phe-ONp substrates were tested. This study highlights how subtle molecular-level changes can influence supramolecular nanostructures, and ultimately affect catalytic efficiency.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Peptídeos/química , Nanoestruturas/química , Isomerismo , Catálise
6.
Phys Chem Chem Phys ; 25(6): 4408-4443, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722861

RESUMO

In tribology, a considerable number of computational and experimental approaches to understand the interfacial characteristics of material surfaces in motion and tribological behaviors of materials have been considered to date. Despite being useful in providing important insights on the tribological properties of a system, at different length scales, a vast amount of data generated from these state-of-the-art techniques remains underutilized due to lack of analysis methods or limitations of existing analysis techniques. In principle, this data can be used to address intractable tribological problems including structure-property relationships in tribological systems and efficient lubricant design in a cost and time effective manner with the aid of machine learning. Specifically, data-driven machine learning methods have shown potential in unraveling complicated processes through the development of structure-property/functionality relationships based on the collected data. For example, neural networks are incredibly effective in modeling non-linear correlations and identifying primary hidden patterns associated with these phenomena. Here we present several exemplary studies that have demonstrated the proficiency of machine learning in understanding these critical factors. A successful implementation of neural networks, supervised, and stochastic learning approaches in identifying structure-property relationships have shed light on how machine learning may be used in certain tribological applications. Moreover, ranging from the design of lubricants, composites, and experimental processes to studying fretting wear and frictional mechanism, machine learning has been embraced either independently or integrated with optimization algorithms by scientists to study tribology. Accordingly, this review aims at providing a perspective on the recent advances in the applications of machine learning in tribology. The review on referenced simulation approaches and subsequent applications of machine learning in experimental and computational tribology shall motivate researchers to introduce the revolutionary approach of machine learning in efficiently studying tribology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA