Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ann Work Expo Health ; 67(7): 895-906, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37382523

RESUMO

OBJECTIVES: Smartphones are increasingly used to collect real-time information on time-varying exposures. We developed and deployed an application (app) to evaluate the feasibility of using smartphones to collect real-time information on intermittent agricultural activities and to characterize agricultural task variability in a longitudinal study of farmers. METHODS: We recruited 19 male farmers, aged 50-60 years, to report their farming activities on 24 randomly selected days over 6 months using the Life in a Day app. Eligibility criteria include personal use of an iOS or Android smartphone and >4 h of farming activities at least two days per week. We developed a study-specific database of 350 farming tasks that were provided in the app; 152 were linked to questions that were asked when the activity ended. We report eligibility, study compliance, number of activities, duration of activities by day and task, and responses to the follow-up questions. RESULTS: Of the 143 farmers we reached out to for this study, 16 were not reached by phone or refused to answer eligibility questions, 69 were ineligible (limited smartphone use and/or farming time), 58 met study criteria, and 19 agreed to participate. Refusals were mostly related to uneasiness with the app and/or time commitment (32 of 39). Participation declined gradually over time, with 11 farmers reporting activities through the 24-week study period. We obtained data on 279 days (median 554 min/day; median 18 days per farmer) and 1,321 activities (median 61 min/activity; median 3 activities per day per farmer). The activities were predominantly related to animals (36%), transportation (12%), and equipment (10%). Planting crops and yard work had the longest median durations; short-duration tasks included fueling trucks, collecting/storing eggs, and tree work. Time period-specific variability was observed; for example, crop-related activities were reported for an average of 204 min/day during planting but only 28 min/day during pre-planting and 110 min/day during the growing period. We obtained additional information for 485 (37%) activities; the most frequently asked questions were related to "feed animals" (231 activities) and "operate fuel-powered vehicle (transportation)" (120 activities). CONCLUSIONS: Our study demonstrated feasibility and good compliance in collecting longitudinal activity data over 6 months using smartphones in a relatively homogeneous population of farmers. We captured most of the farming day and observed substantial heterogeneity in activities, highlighting the need for individual activity data when characterizing exposure in farmers. We also identified several areas for improvement. In addition, future evaluations should include more diverse populations.


Assuntos
Aplicativos Móveis , Exposição Ocupacional , Animais , Agricultura , Estudos Longitudinais , Projetos Piloto , Smartphone , Humanos , Pessoa de Meia-Idade , Masculino
2.
Am J Ind Med ; 66(7): 573-586, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087683

RESUMO

BACKGROUND: We developed an algorithm to quantitatively estimate endotoxin exposure for farmers in the Biomarkers of Exposure and Effect in Agriculture (BEEA) Study. METHODS: The algorithm combined task intensity estimates derived from published data with questionnaire responses on activity duration to estimate task-specific cumulative endotoxin exposures for 13 tasks during four time windows, ranging from "past 12 months" to "yesterday/today." We applied the algorithm to 1681 participants in Iowa and North Carolina. We examined correlations in endotoxin metrics within- and between-task. We also compared these metrics to prior day full-shift inhalable endotoxin concentrations from 32 farmers. RESULTS: The highest median task-specific cumulative exposures were observed for swine confinement, poultry confinement, and grind feed. Inter-quartile ranges showed substantial between-subject variability for most tasks. Time window-specific metrics of the same task were moderately-highly correlated. Between-task correlation was variable, with moderately-high correlations observed for similar tasks (e.g., between animal-related tasks). Prior day endotoxin concentration increased with the total metric and with task metrics for swine confinement, clean other animal facilities, and clean grain bins. SIGNIFICANCE: This study provides insight into the variability and sources of endotoxin exposure among farmers in the BEEA study and summarizes exposure estimates for future investigations in this population.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Animais , Suínos , Endotoxinas/análise , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Agricultura , Algoritmos , Biomarcadores
3.
Am J Ind Med ; 66(7): 561-572, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087684

RESUMO

BACKGROUND/OBJECTIVE: Farmers conduct numerous tasks with potential for endotoxin exposure. As a first step to characterize endotoxin exposure for farmers in the Biomarkers of Exposure and Effect in Agriculture (BEEA) Study, we used published data to estimate task-specific endotoxin concentrations. METHODS: We extracted published data on task-specific, personal, inhalable endotoxin concentrations for agricultural tasks queried in the study questionnaire. The data, usually abstracted as summary measures, were evaluated using meta-regression models that weighted each geometric mean (GM, natural-log transformed) by the inverse of its within-study variance to obtain task-specific predicted GMs. RESULTS: We extracted 90 endotoxin summary statistics from 26 studies for 9 animal-related tasks, 30 summary statistics from 6 studies for 3 crop-related tasks, and 10 summary statistics from 5 studies for 4 stored grain-related tasks. Work in poultry and swine confinement facilities, grinding feed, veterinarian services, and cleaning grain bins had predicted GMs > 1000 EU/m3 . In contrast, harvesting or hauling grain and other crop-related tasks had predicted GMs below 100 EU/m3 . SIGNIFICANCE: These task-specific endotoxin GMs demonstrated exposure variability across common agricultural tasks. These estimates will be used in conjunction with questionnaire responses on task duration to quantitatively estimate endotoxin exposure for study participants, described in a companion paper.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Animais , Suínos , Endotoxinas/análise , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Exposição Ocupacional/análise , Agricultura , Algoritmos
4.
J Occup Environ Hyg ; 20(5-6): 207-218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017362

RESUMO

Pesticide dust concentrations in homes have been previously associated with occupational and home/garden use of pesticides, hygiene practices, and other factors. This study evaluated the relationship between self-reported use of 2,4-dichlorophenoxyacetic acid (2,4-D) and house dust concentrations and these factors in the Biomarkers of Exposure and Effect in Agriculture (BEEA) Study, a molecular epidemiologic study of farmers in Iowa and North Carolina. The vacuum dust from the homes of 35 BEEA participants was analyzed for the presence of 2,4-D. Participants provided detailed information on occupational and home/garden pesticide use during the past 12 months and reported household characteristics via questionnaires. Linear regression models were used to examine the association between 2,4-D concentrations and four exposure metrics for occupational use in the last 12 months (yes/no, days since last use, days of use, intensity-weighted days of use), home/garden use (yes/no), as well as several household characteristics. 2,4-D was detected in all homes and was used occupationally by 54% of the participants. In a multi-variable model, compared to homes with no occupational or home/garden 2,4-D use reported in the past 12 months, concentrations were 1.6 (95% confidence interval (CI): 0.5, 4.9) times higher in homes with low occupational 2,4-D use (intensity-weighted days < median) and 3.1 (95% CI: 1.0, 9.8) times higher in homes of participants with high use (≥median intensity-weighted days) (p-trend = 0.06). Similar patterns were observed with other occupational metrics. Additionally, 2,4-D dust concentrations were non-significantly elevated (relative difference (RD) = 1.8, 95% CI: 0.5, 6.2) in homes with home/garden use and were significantly lower in homes that did not have carpets (RD = 0.20, 95% CI: 0.04, 0.98). These analyses suggest that elevated 2,4-D dust concentrations were associated with several metrics of recent occupational use and may be influenced by home/garden use and household characteristics.


Assuntos
Herbicidas , Exposição Ocupacional , Praguicidas , Humanos , Exposição Ambiental/análise , Herbicidas/análise , Poeira/análise , Fazendeiros , Agricultura , Ácido 2,4-Diclorofenoxiacético/análise , Exposição Ocupacional/análise
5.
Ann Work Expo Health ; 66(8): 974-984, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35731645

RESUMO

OBJECTIVES: Farmers may be exposed to glucans (a cell component of molds) through a variety of tasks. The magnitude of exposure depends on each farmer's activities and their duration. We developed a task-specific algorithm to estimate glucan exposure that combines measurements of (1→3)-ß-D-glucan with questionnaire responses from farmers in the Biomarkers of Exposure and Effect in Agriculture (BEEA) study. METHODS: To develop the algorithm, we first derived task-based geometric means (GMs) of glucan exposure for farming tasks using inhalable personal air sampling data from a prior air monitoring study in a subset of 32 BEEA farmers. Next, these task-specific GMs were multiplied by subject-reported activity frequencies for three time windows (the past 30 days, past 7 days, and past 1 day) to obtain subject-, task-, and time window-specific glucan scores. These were summed together to obtain a total glucan score for each subject and time window. We examined the within- and between-task correlation in glucan scores for different time frames. Additionally, we assessed the algorithm for the 'past 1 day' time window using full-shift concentrations from the 32 farmers who participated in air monitoring the day prior to an interview using multilevel statistical models to compare the measured glucan concentration with algorithm glucan scores. RESULTS: We focused on the five highest exposed tasks: poultry confinement (300 ng/m3), swine confinement (300 ng/m3), clean grain bins (200 ng/m3), grind feed (100 ng/m3), and stored seed or grain (50 ng/m3); the remaining tasks were <50 ng/m3 and had similar concentrations to each other. Overall, 67% of the participants reported at least one of these tasks. The most prevalent task was stored seed or grain (64%). The highest median glucan scores were observed for poultry confinement and swine confinement; these tasks were reported by 2% and 8% of the participants, respectively. The correlation between scores for the same task but different time windows was high for swine confinement and poultry confinement, but low for clean grain bins. Task-specific scores had low correlation with other tasks. Prior day glucan concentration was associated with the total glucan 'past 1 day' score and with swine confinement and clean grain bin task scores. CONCLUSIONS: This study provides insight into the variability and key sources of glucan exposure in a US farming population. It also provides a framework for better glucan exposure assessment in epidemiologic studies and is a crucial starting point for evaluating health risks associated with glucans in future epidemiologic evaluations of this population.


Assuntos
Exposição por Inalação , Exposição Ocupacional , Agricultura , Algoritmos , Animais , Biomarcadores , Grão Comestível , Monitoramento Ambiental , Fazendeiros , Glucanos , Humanos , Exposição por Inalação/análise , Exposição Ocupacional/análise , Suínos
6.
Ann Work Expo Health ; 66(3): 392-401, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34625802

RESUMO

OBJECTIVES: We adapted previously developed decision rules from the New England Bladder Cancer Study (NEBCS) to assign occupational exposure to straight, soluble, and synthetic metalworking fluids (MWFs) to participants of the Spanish Bladder Cancer Study (SBCS). METHODS: The SBCS and NEBCS are case-control studies that used the same lifetime occupational history and job module questionnaires. We adapted published decision rules from the NEBCS that linked questionnaire responses to estimates of the probability (<5, ≥5 to <50, ≥50 to <100, and 100%), frequency (in h week-1), and intensity (in mg m-3) of exposure to each of the three broad classes of MWFs to assign exposure to 10 182 reported jobs in the SBCS. The decision rules used the participant's module responses to MWF questions wherever possible. We then used these SBCS module responses to calculate job-, industry-, and time-specific patterns in the prevalence and frequency of MWF exposure. These estimates replaced the NEBCS-specific estimates in decision rules applied to jobs without MWF module responses. Intensity estimates were predicted using a previously developed statistical model that used the decade, industry (three categories), operation (grinding versus machining), and MWF type extracted from the SBCS questionnaire responses. We also developed new decision rules to assess mineral oil exposure from non-machining sources (possibly exposed versus not exposed). The decision rules for MWF and mineral oil identified questionnaire response patterns that required job-by-job expert review. RESULTS: To assign MWF exposure, we applied decision rules that incorporated participant's responses and job group patterns for 99% of the jobs and conducted expert review of the remaining 1% (145) jobs. Overall, 14% of the jobs were assessed as having ≥5% probability of exposure to at least one of the three MWFs. Probability of exposure of ≥50% to soluble, straight, and synthetic MWFs was identified in 2.5, 1.7, and 0.5% of the jobs, respectively. To assign mineral oil from non-machining sources, we used module responses for 49% of jobs, a job-exposure matrix for 41% of jobs, and expert review for the remaining 10%. We identified 24% of jobs as possibly exposed to mineral oil from non-machining sources. CONCLUSIONS: We demonstrated that we could adapt existing decision rules to assess exposure in a new population by deriving population-specific job group patterns.


Assuntos
Exposição Ocupacional , Neoplasias da Bexiga Urinária , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Óleo Mineral , Espanha , Neoplasias da Bexiga Urinária/epidemiologia
7.
J Occup Environ Hyg ; 19(2): 87-90, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34895098

RESUMO

Few studies have evaluated the validity of self-report of work activities because of challenges in obtaining objective measures. In this study, farmers' recall of the previous day's agricultural activities was compared to activities observed by field staff during air monitoring. Recall was assessed in 32 farmers from the Biomarkers of Exposure and Effect in Agriculture Study, a subset of a prospective cohort study. The farmers participated in 56 visits that comprised air monitoring the day before an interview. The answers for 14 agricultural activities were compared to activities observed by field staff during air monitoring (median duration 380 min, range 129-486). For each task, evaluated as yes/no, overall agreement, sensitivity, specificity, and kappa were calculated. Median prevalence of the 14 activities was 8% from observation and 13% from participants (range: 2-54%). Agreement was generally good to perfect, with a median overall agreement of 95% (range: 89-100%), median sensitivity of 84% (50-100%), median specificity of 95% (88-100%), and median kappa of 0.65 (0.31-1.0). Reasons for disagreement included activities occurring when the field staff was not present (i.e., milking cows), unclear timing notes that made it difficult to determine whether the activity occurred the day of and/or day before the interview, definition issues (i.e., participant included hauling in the definition of harvesting), and difficulty in observing details of an activity (i.e., whether hay was moldy). This study provides support for accurate participant recall the day after activities.


Assuntos
Agricultura , Animais , Bovinos , Humanos , Projetos Piloto , Prevalência , Estudos Prospectivos , Autorrelato
8.
Int J Hyg Environ Health ; 228: 113525, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311660

RESUMO

BACKGROUND: The observed deficit of lung cancer in farmers has been partly attributed to exposure to organic dusts and endotoxins based largely on surrogate metrics. To move beyond these surrogates for etiological studies, we characterized task-based and time-weighted average (TWA) exposure to inhalable endotoxin, (1 â†’ 3)-ß-D-glucan, and dust in Iowa farmers. METHODS: We collected 320 personal inhalable dust samples from 32 farmers during 69 sample days in 2015 and 2016. Samples were collected using Button aerosol samplers and analyzed for endotoxin using a kinetic chromogenic amebocyte lysate assay, and for (1 â†’ 3)-ß-D-glucan using a Limulus endpoint assay. We assessed relationships between bioaerosol concentrations and selected tasks and farm characteristics using linear mixed-effects models. RESULTS: Bedding work, hog handling, and working in barn/confinement buildings, grain bins, and grain elevators were associated with higher endotoxin exposure. We found a monotonic trend between higher endotoxin concentrations and increasing number of animals. Bedding work, cleaning, and feed/grain storage work were associated with higher (1 â†’ 3)-ß-D-glucan concentrations. The median concentrations by task spanned one order of magnitude for inhalable dust and two orders of magnitude for endotoxin and (1 â†’ 3)-ß-D-glucan. Pearson correlations between endotoxin and glucan concentrations were 0.22 for TWA exposure and 0.56 for task samples. CONCLUSIONS: This characterization of exposure factors that influence bioaerosol concentrations can support the development of refined bioaerosol exposure metrics for future etiologic analyses of cancer and other health outcomes in farmers.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Endotoxinas/análise , Fazendeiros , Glucanos/análise , Exposição por Inalação/análise , Exposição Ocupacional/análise , Idoso , Monitoramento Ambiental , Humanos , Iowa , Masculino
9.
Ann Work Expo Health ; 64(5): 503-513, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32219300

RESUMO

OBJECTIVES: Daily driving of diesel-powered tractors has been linked to increased lung cancer risk in farmers, yet few studies have quantified exposure levels to diesel exhaust during tractor driving or during other farm activities. We expanded an earlier task-based descriptive investigation of factors associated with real-time exposure levels to black carbon (BC, a surrogate of diesel exhaust) in Iowa farmers by increasing the sample size, collecting repeated measurements, and applying statistical models adapted to continuous measurements. METHODS: The expanded study added 43 days of sampling, for a total of 63 sample days conducted in 2015 and 2016 on 31 Iowa farmers. Real-time, continuous monitoring (30-s intervals) of personal BC concentrations was performed using a MicroAeth AE51 microaethelometer affixed with a micro-cyclone. A field researcher recorded information on tasks, fuel type, farmer location, and proximity to burning biomass. We evaluated the influence of these variables on log-transformed BC concentrations using a linear mixed-effect model with random effects for farmer and day and a first-order autoregressive structure for within-day correlation. RESULTS: Proximity to diesel-powered equipment was observed for 42.5% of the overall sampling time and on 61 of the 63 sample days. Predicted geometric mean BC concentrations were highest during grain bin work, loading, and harvesting, and lower for soil preparation and planting. A 68% increase in BC concentrations was predicted for close proximity to a diesel-powered vehicle, relative to far proximity, while BC concentrations were 44% higher in diesel vehicles with open cabins compared with closed cabins. Task, farmer location, fuel type, and proximity to burning biomass explained 8% of within-day variance in BC concentrations, 2% of between-day variance, and no between-farmer variance. CONCLUSION: Our findings showed that farmers worked frequently near diesel equipment and that BC concentrations varied between tasks and by fuel type, farmer location, and proximity to burning biomass. These results could support the development of exposure models applicable to investigations of health effects in farmers associated with exposure to diesel engine exhaust.


Assuntos
Exposição Ocupacional , Emissões de Veículos , Agricultura , Carbono/análise , Fazendas , Humanos , Modelos Estatísticos
10.
Ann Work Expo Health ; 63(8): 842-855, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31504127

RESUMO

OBJECTIVES: Occupational exposures in population-based case-control studies are increasingly being assessed using decision rules that link participants' responses to occupational questionnaires to exposure estimates. We used a hierarchical process that incorporated decision rules and job-by-job expert review to assign occupational benzene exposure estimates in a US population-based case-control study of non-Hodgkin lymphoma. METHODS: We conducted a literature review to identify scenarios in which occupational benzene exposure has occurred, which we grouped into 12 categories of benzene exposure sources. For each source category, we then developed decision rules for assessing probability (ordinal scale based on the likelihood of exposure > 0.02 ppm), frequency (proportion of work time exposed), and intensity of exposure (in ppm). The rules used the participants' occupational history responses and, for a subset of jobs, responses to job- and industry-specific modules. For probability and frequency, we used a hierarchical assignment procedure that prioritized subject-specific module information when available. Next, we derived job-group medians from the module responses to assign estimates to jobs with only occupational history responses. Last, we used job-by-job expert review to assign estimates when job-group medians were not available or when the decision rules identified possible heterogeneous or rare exposure scenarios. For intensity, we developed separate estimates for each benzene source category that were based on published measurement data whenever possible. Frequency and intensity annual source-specific estimates were assigned only for those jobs assigned ≥75% probability of exposure. Annual source-specific concentrations (intensity × frequency) were summed to obtain a total annual benzene concentration for each job. RESULTS: Of the 8827 jobs reported by participants, 8% required expert review for one or more source categories. Overall, 287 (3.3%) jobs were assigned ≥75% probability of exposure from any benzene source category. The source categories most commonly assigned ≥75% probability of exposure were gasoline and degreasing. The median total annual benzene concentration among jobs assigned ≥75% probability was 0.11 ppm (interquartile range: 0.06-0.55). The highest source-specific median annual concentrations were observed for ink and printing (2.3 and 1.2 ppm, respectively). CONCLUSIONS: The applied framework captures some subject-specific variability in work tasks, provides transparency to the exposure decision process, and facilitates future sensitivity analyses. The developed decision rules can be used as a starting point by other researchers to assess occupational benzene exposure in future population-based studies.


Assuntos
Benzeno/análise , Linfoma não Hodgkin/epidemiologia , Exposição Ocupacional/análise , Ocupações/estatística & dados numéricos , Medição de Risco/métodos , Benzeno/efeitos adversos , Estudos de Casos e Controles , Técnicas de Apoio para a Decisão , Humanos , Linfoma não Hodgkin/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Estudos Retrospectivos , Inquéritos e Questionários
11.
Occup Environ Med ; 76(9): 680-687, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308155

RESUMO

OBJECTIVES: The validity of surrogate measures of retrospective occupational exposure in population-based epidemiological studies has rarely been evaluated. Using toenail samples as bioindicators of exposure, we assessed whether work tasks and expert assessments of occupational metal exposure obtained from personal interviews were associated with lead and manganese concentrations. METHODS: We selected 609 controls from a case-control study of bladder cancer in New England who had held a job for ≥1 year 8-24 months prior to toenail collection. We evaluated associations between toenail metal concentrations and five tasks extracted from occupational questionnaires (grinding, painting, soldering, welding, working near engines) using linear regression models. For 139 subjects, we also evaluated associations between the toenail concentrations and exposure estimates from three experts. RESULTS: We observed a 1.9-fold increase (95% CI 1.4 to 2.5) in toenail lead concentrations with painting and 1.4-fold increase (95% CI 1.1 to 1.7) in manganese concentrations with working around engines and handling fuel. We observed significant trends with increasing frequency of both activities. For lead, significant trends were observed with the ratings from all three experts. Their average ratings showed the strongest association, with subjects rated as possibly or probably exposed to lead having concentrations that were 2.0 and 2.5 times higher, respectively, than in unexposed subjects (ptrend <0.001). Expert estimates were only weakly associated with manganese toenail concentrations. CONCLUSIONS: Our findings support the ability of experts to identify broad contrasts in previous occupational exposure to lead. The stronger associations with task frequency and expert assessments support using refined exposure characterisation whenever possible.


Assuntos
Chumbo/análise , Manganês/análise , Exposição Ocupacional/análise , Adulto , Idoso , Monitoramento Biológico/métodos , Estudos de Casos e Controles , Feminino , Humanos , Maine , Masculino , Pessoa de Meia-Idade , Unhas/química , New Hampshire , Estudos Retrospectivos , Vermont
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA