Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSphere ; 8(4): e0014223, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37358300

RESUMO

Streptococcus pneumoniae-induced hemolytic uremic syndrome (Sp-HUS) is a kidney disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. This disease is frequently underdiagnosed and its pathophysiology is poorly understood. In this work, we compared clinical strains, isolated from infant Sp-HUS patients, with a reference pathogenic strain D39, for host cytotoxicity and further explored the role of Sp-derived extracellular vesicles (EVs) in the pathogenesis of an HUS infection. In comparison with the wild-type strain, pneumococcal HUS strains caused significant lysis of human erythrocytes and increased the release of hydrogen peroxide. Isolated Sp-HUS EVs were characterized by performing dynamic light-scattering microscopy and proteomic analysis. Sp-HUS strain released EVs at a constant concentration during growth, yet the size of the EVs varied and several subpopulations emerged at later time points. The cargo of the Sp-HUS EVs included several virulence factors at high abundance, i.e., the ribosomal subunit assembly factor BipA, the pneumococcal surface protein A, the lytic enzyme LytC, several sugar utilization, and fatty acid synthesis proteins. Sp-HUS EVs strongly downregulated the expression of the endothelial surface marker platelet endothelial cell adhesion molecule-1 and were internalized by human endothelial cells. Sp-HUS EVs elicited the release of pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6) and chemokines (CCL2, CCL3, CXCL1) by human monocytes. These findings shed new light on the overall function of Sp-EVs, in the scope of infection-mediated HUS, and suggest new avenues of research for exploring the usefulness of Sp-EVs as therapeutic and diagnostic targets. IMPORTANCE Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious and underdiagnosed deadly complication of invasive pneumococcal disease. Despite the introduction of the pneumococcal vaccine, cases of Sp-HUS continue to emerge, especially in children under the age of 2. While a lot has been studied regarding pneumococcal proteins and their role on Sp-HUS pathophysiology, little is known about the role of extracellular vesicles (EVs). In our work, we isolate and initially characterize EVs from a reference pathogenic strain (D39) and a strain isolated from a 2-year-old patient suffering from Sp-HUS. We demonstrate that despite lacking cytotoxicity toward human cells, Sp-HUS EVs are highly internalized by endothelial cells and can trigger cytokine and chemokine production in monocytes. In addition, this work specifically highlights the distinct morphological characteristics of Sp-HUS EVs and their unique cargo. Overall, this work sheds new light into potentially relevant players contained in EVs that might elucidate about pneumococcal EVs biogenesis or pose as interesting candidates for vaccine design.


Assuntos
Vesículas Extracelulares , Síndrome Hemolítico-Urêmica , Lactente , Criança , Humanos , Pré-Escolar , Streptococcus pneumoniae , Células Endoteliais/patologia , Proteômica , Síndrome Hemolítico-Urêmica/diagnóstico , Síndrome Hemolítico-Urêmica/etiologia , Síndrome Hemolítico-Urêmica/patologia , Citocinas , Vacinas Pneumocócicas
2.
Biomed Opt Express ; 8(9): 4135-4140, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966852

RESUMO

We here report for the first time the synergistic implementation of structured illumination microscopy (SIM) and multifocus microscopy (MFM). This imaging modality is designed to alleviate the problem of insufficient volumetric acquisition speed in super-resolution biological imaging. SIM is a wide-field super-resolution technique that allows imaging with visible light beyond the classical diffraction limit. Employing multifocus diffractive optics we obtain simultaneous wide-field 3D imaging capability in the SIM acquisition sequence, improving volumetric acquisition speed by an order of magnitude. Imaging performance is demonstrated on biological specimens.

3.
Opt Express ; 24(19): 22121-34, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661947

RESUMO

The reconstruction process of structured illumination microscopy (SIM) creates substantial artefacts if the specimen has moved during the acquisition. This reduces the applicability of SIM for live cell imaging, because these artefacts cannot always be recognized as such in the final image. A movement is not necessarily visible in the raw data, due to the varying excitation patterns and the photon noise. We present a method to detect motion by extracting and comparing two independent 3D wide-field images out of the standard SIM raw data without needing additional images. Their difference reveals moving objects overlaid with noise, which are distinguished by a probability theory-based analysis. Our algorithm tags motion-artefacts in the final high-resolution image for the first time, preventing the end-user from misinterpreting the data. We show and explain different types of artefacts and demonstrate our algorithm on a living cell.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia/instrumentação , Artefatos , Iluminação , Movimento
4.
PLoS One ; 10(7): e0132174, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147644

RESUMO

The microscope image of a thick fluorescent sample taken at a given focal plane is plagued by out-of-focus fluorescence and diffraction limited resolution. In this work, we show that a single slice of Structured Illumination Microscopy (two or three beam SIM) data can be processed to provide an image exhibiting tight sectioning and high transverse resolution. Our reconstruction algorithm is adapted from the blind-SIM technique which requires very little knowledge of the illumination patterns. It is thus able to deal with illumination distortions induced by the sample or illumination optics. We named this new algorithm thick slice blind-SIM because it models a three-dimensional sample even though only a single two-dimensional plane of focus was measured.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Actinas/análise , Algoritmos , Artefatos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/ultraestrutura , Feminino , Humanos , Iluminação , Microscopia de Fluorescência/instrumentação , Paxilina/análise
5.
Methods Appl Fluoresc ; 3(1): 014001, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29148480

RESUMO

A significant improvement in acquisition speed of structured illumination microscopy (SIM) opens a new field of applications to this already well-established super-resolution method towards 3D scanning real-time imaging of living cells. We demonstrate a method of increased acquisition speed on a two-beam SIM fluorescence microscope with a lateral resolution of ~100 nm at a maximum raw data acquisition rate of 162 frames per second (fps) with a region of interest of 16.5  ×  16.5 µm2, free of mechanically moving components. We use a programmable spatial light modulator (ferroelectric LCOS) which promises precise and rapid control of the excitation pattern in the sample plane. A passive Fourier filter and a segmented azimuthally patterned polarizer are used to perform structured illumination with maximum contrast. Furthermore, the free running mode in a modern sCMOS camera helps to achieve faster data acquisition.

6.
Opt Express ; 22(17): 20663-77, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321271

RESUMO

We describe a two-beam interference structured illumination fluorescence microscope. The novelty of the presented system lies in its simplicity. A programmable spatial light modulator (ferroelectric LCoS) in an intermediate image plane enables precise and rapid control of the excitation pattern in the specimen. The contrast of the projected light pattern is strongly influenced by the polarization state of the light entering the high NA objective. To achieve high contrast, we use a segmented polarizer. Furthermore, a mask with six holes blocks unwanted components in the spatial frequency spectrum of the illumination grating. Both these passive components serve their purpose in a simpler and almost as efficient way as active components. We demonstrate a lateral resolution of 114.2 ± 9.5 nm at a frame rate of 7.6 fps per reconstructed 2D slice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA