RESUMO
The optical response of single-walled carbon nanotubes (SWCNTs) to far-infrared (FIR) radiation was systematically studied using various SWCNTs with different tube-length distributions. The observed peak position in the FIR spectra linearly scaled with the inverse of tube length irrespective of diameter, which is consistent with the dispersion relation predicted by the one-dimensional plasmon resonance model. The effects of chemical doping on the FIR spectra of the separated metallic and semiconducting SWCNTs clearly indicate that the motion of plasmons in the electronic band structures is primarily responsible for the optical response in these spectral regions. The observed absorption peaks are naturally sensitive to the presence of defects on the tube wall and correlated with the electric resistance, suggesting that the plasmons resonate with the current path length of the SWCNTs.
RESUMO
Quasi-one-dimensional nanotubes and two-dimensional nanoribbons are two fundamental forms of nanostructures, and integrating them into a novel mixed low-dimensional nanomaterial is fascinating and challenging. We have synthesized a stable mixed low-dimensional nanomaterial consisting of MoS(2) inorganic nanoribbons encapsulated in carbon nanotubes (which we call nanoburritos). This route can be extended to the synthesis of nanoburritos composed of other ultranarrow transition-metal chalcogenide nanoribbons and carbon nanotubes. The widths of previously synthesized MoS(2) ribbons are greater than 50 nm, while the encapsulated MoS(2) nanoribbons have uniform widths down to 1-4 nm and layer numbers down to 1-3, depending on the nanotube diameter. The edges of the MoS(2) nanoribbons have been identified as zigzag-shaped using both high-resolution transmission electron microscopy and density functional theory calculations.
Assuntos
Dissulfetos/química , Molibdênio/química , Nanoestruturas/química , Nanotubos de Carbono/química , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The effects of C(60) encapsulation on the radial breathing mode (RBM) frequencies of single-wall carbon nanotubes (SWCNTs) are investigated over a wide range of diameters (d(t) approximately 1.25-1.5 nm). The observed frequency shifts show a characteristic behavior depending on the inter-spacing between C(60) and SWCNTs. The present findings clearly indicate the van der Waals nature of the SWCNT-C(60) interaction and an importance of hybridization between the electronic states of C(60) and SWCNTs.
RESUMO
We investigate the effects of C60 fullerene encapsulation on the radial breathing mode (RBM) of semiconducting single-wall carbon nanotubes (SWCNTs) under tunable laser excitations. The changes in the RBM frequencies after C60 insertions show characteristic behavior; higher frequency shifts are observed in the case of smaller diameter tubes (dt
RESUMO
Unique low-dimensional SiO(2)-based nanomaterials can be encapsulated and synthesized inside the nanometer-scale one-dimensional internal spaces of carbon nanotubes (CNTs). In this study, various single-walled CNTs (SWNTs) and double-walled CNTs (DWNTs) having different diameters are used as containers for cubic octameric H(8)Si(8)O(12) molecules. High-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy observations revealed that, depending on the diameter of the CNTs, two types of structures are formed inside the SWNTs and DWNTs: In the case of those CNTs having inner diameters ranging from 1.2 to 1.4 nm, a new ordered self-assembled structure composed of H(8)Si(4n)O(8n-4) molecules was formed through the transformation of H(8)Si(8)O(12); however, in the case of CNTs having inner diameters larger than 1.7 nm, a disordered structure was formed. This behavior may indicate that strong interactions occur between the CNTs and the encapsulated H(8)Si(4n)O(8n-4) molecules.
Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Silanos/química , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
We report optical band gap modifications of single-walled carbon nanotubes upon C60 insertions by using photoluminescence and the corresponding excitation spectroscopy. The shifts in optical transition energies strongly depend on the tube diameter (dt) and the "2n + m" family type, which can be explained by the local strain and the hybridization between the nanotube states and the C60 molecular orbitals. The present results provide possible design rules for nanotube-based heterostructures having a specific type of electronic functionality.
Assuntos
Fulerenos/química , Nanotubos de Carbono/química , Óptica e Fotônica , Luminescência , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/química , Tamanho da Partícula , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Espectral Raman/métodosRESUMO
Visible-light-driven TiO2 photocatalysts doped with nitrogen have been prepared as powders and thin films in a cylindrical tubular furnace under a stream of ammonia gas. The photocatalysts thus obtained were found to have a band-gap energy of 2.95 eV. Electron spin resonance (ESR) under irradiation with visible light (lambda > or = 430 nm) afforded the increase in intensity in the visible-light region. The concentration of trapped holes was about fourfold higher than that of trapped electrons. Nitrogen-doped TiO2 has been used to investigate mechanistically the photocatalytic oxidation of trichloroethylene (TCE) under irradiation with visible light (lambda > or = 420 nm). Cl and O radicals, which contribute significantly to the generation of dichloroacetyl chloride (DCAC) in the photocatalytic oxidation of TCE under UV irradiation, were found to be deactivated under irradiation with visible light. As the main by-product, only phosgene was detected in the photocatalytic oxidation of TCE under irradiation with visible light. Thus, the reaction mechanism of TCE photooxidation under irradiation with visible light clearly differs markedly from that under UV irradiation. Based on the results of the present study, we propose a new reaction mechanism and adsorbed species for the photocatalytic oxidation of TCE under irradiation with visible light. The energy band for TiO2 by doping with nitrogen may involve an isolated band above the valence band.