Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSystems ; : e0025624, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920373

RESUMO

Non-heritable, phenotypic drug resistance toward antibiotics challenges antibiotic therapies. Characteristics of such phenotypic resistance have implications for the evolution of heritable resistance. Diverse forms of phenotypic resistance have been described, but phenotypic resistance characteristics remain less explored than genetic resistance. Here, we add novel combinations of single-cell characteristics of phenotypic resistant E. coli cells and compare those to characteristics of susceptible cells of the parental population by exposure to different levels of recurrent ampicillin antibiotic. Contrasting expectations, we did not find commonly described characteristics of phenotypic resistant cells that arrest growth or near growth. We find that under ampicillin exposure, phenotypic resistant cells reduced their growth rate by about 50% compared to growth rates prior to antibiotic exposure. The growth reduction is a delayed alteration to antibiotic exposure, suggesting an induced response and not a stochastic switch or caused by a predetermined state as frequently described. Phenotypic resistant cells exhibiting constant slowed growth survived best under ampicillin exposure and, contrary to expectations, not only fast-growing cells suffered high mortality triggered by ampicillin but also growth-arrested cells. Our findings support diverse modes of phenotypic resistance, and we revealed resistant cell characteristics that have been associated with enhanced genetically fixed resistance evolution, which supports claims of an underappreciated role of phenotypic resistant cells toward genetic resistance evolution. A better understanding of phenotypic resistance will benefit combatting genetic resistance by developing and engulfing effective anti-phenotypic resistance strategies. IMPORTANCE: Antibiotic resistance is a major challenge for modern medicine. Aside from genetic resistance to antibiotics, phenotypic resistance that is not heritable might play a crucial role for the evolution of antibiotic resistance. Using a highly controlled microfluidic system, we characterize single cells under recurrent exposure to antibiotics. Fluctuating antibiotic exposure is likely experienced under common antibiotic therapies. These phenotypic resistant cell characteristics differ from previously described phenotypic resistance, highlighting the diversity of modes of resistance. The phenotypic characteristics of resistant cells we identify also imply that such cells might provide a stepping stone toward genetic resistance, thereby causing treatment failure.

2.
Proc Natl Acad Sci U S A ; 116(19): 9658-9664, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004061

RESUMO

Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species.


Assuntos
Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais , Extinção Biológica , Vertebrados/fisiologia , Animais
3.
Data Brief ; 23: 103584, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30809558

RESUMO

This paper contains data on intentionally deployed wrecks to serve as artificial reefs from 1942 to 2016. The deployment of decommissioned vessels and other available wrecks is a common practice in many coastal countries, such as the USA, Australia, Malta, and New Zealand. We obtained data of georeferenced sites of wrecks from the scientific literature, local databases, and diving web sites published in the English language. Furthermore, we included information regarding the type of structure, location, depth, country, year of deployment and estimated life span. Moreover, we provide information on whether the wreck is located inside one of the World׳s Protected Areas, key biophysical Standard Level Data from the World Ocean Database, distance to reefs from the Coral Trait Database, and distances to 597 aquariums that are members of the Species360 global network of Aquariums and Zoological institutions, in the Zoological Information Management System (ZIMS). We provide data for wrecks with monitoring surveys in the peer-review literature, although these only comprise 2% of the records (36 of 1907 wrecks). The data we provide here can be used for research and evaluation of already deployed reefs, especially if combined with additional spatial information on biodiversity and threats.

4.
Fish Shellfish Immunol ; 25(6): 834-40, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18854215

RESUMO

Mussels are filter-feeders living in a bacteria-rich environment. We have previously found that numerous bacterial species are naturally present within the cell-free hemolymph, including several of the Vibrio genus, whereas the intra-cellular content of hemocytes was sterile. When bacteria were injected into the circulation of the mussel, the number of living intra-hemocyte bacteria dramatically increased in less than an hour, suggesting intense phagocytosis, then gradually decreased, with no viable bacteria remaining 12h post-injection for Micrococcus lysodeikticus, 24h for Vibrio splendidus and more than 48 h for Vibrio anguillarum. The total hemocyte count (THC) was dramatically lowered by the bacterial injections, as quantified by flow cytometry. V. splendidus induced the strongest decreases with -66% 9h post-injection of living bacteria and -56% 3h post-injection of heat-killed bacteria. Flow cytometry was used to identify three main sub-populations of hemocytes, namely hyalinocytes, small granulocytes and large granulocytes. When THC was minimal, i.e. within the first 9h post-injection, proportions of the three cell categories varied dramatically, suggesting differential involvement according to the targets, but small granulocytes remained the majority. According to a decrease in their number followed by an increase (+90% at 12h with living V. splendidus), hyalinocytes also appeared to be involved as cellular effectors of antibacterial immunity, despite possessing little capacity for phagocytosis and not containing antimicrobial peptides.


Assuntos
Infecções por Bactérias Gram-Positivas/veterinária , Hemolinfa/microbiologia , Micrococcus/imunologia , Mytilus/microbiologia , Vibrioses/veterinária , Vibrio/imunologia , Animais , Contagem de Colônia Microbiana/veterinária , Citometria de Fluxo/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Hemócitos/imunologia , Hemócitos/microbiologia , Hemolinfa/citologia , Hemolinfa/imunologia , Mytilus/imunologia , Vibrioses/imunologia , Vibrioses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA