Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Robot ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836749

RESUMO

Suction grippers offer a distinct advantage in their ability to handle a wide range of items. However, attaching these grippers to irregular and rough surfaces presents an ongoing challenge. To address this obstacle, this study explores the integration of magnetic intelligence into a soft suction gripper design, enabling fast external magnetic actuation of the attachment process. Additionally, miniaturization options are enhanced by implementing a compliant deploying mechanism. The resulting design is the first-of-its-kind magnetically-actuated deployable suction gripper featuring a thin magnetic membrane (Ø 50 mm) composed of carbonyl iron particles embedded in a silicone matrix. This membrane is supported by a frame made of superelastic nitinol wires that facilitate deployment. During experiments, the proof-of-principle prototype demonstrates successful attachment on a diverse range of curved surfaces in both dry and wet environments. The gripper achieves attachment on curved surfaces with radii of 50-75 mm, exerting a maximum attachment force of 2.89 ± 0.54 N. The current gripper design achieves a folding percentage of 75%, enabling it to fit into a Ø 12.5 mm tube and access hard-to-reach areas while maintaining sufficient surface area for attachment forces. The proposed prototype serves as a foundational steppingstone for further research in the development of reliable and effective magnetically-actuated suction grippers across various configurations. By addressing the limitations of attachment to irregular surfaces and exploring possibilities for miniaturization and precise control, this study opens new avenues for the practical application of suction grippers in diverse industries and scenarios.

2.
Bioinspir Biomim ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925108

RESUMO

This review explores the present knowledge of the unique properties of shark skin and possible applications of its functionalities, including drag reduction and swimming efficiency. Tooth-like denticles, with varied morphologies, sizes, and densities across the shark's body, significantly influence the flow and interaction of fluids. Examining dermal denticle morphology, this study unveils the functional properties of real shark skin, including mechanical properties such as stiffness, stress-strain characteristics and the denticle density's impact on tensile properties. The adaptive capabilities of the Mako shark scales, especially in high-speed swimming, are explored, emphasizing their passive flow-actuated dynamic micro-roughness. This research contains an overview of various studies on real shark skin, categorizing them into skin properties, morphology, and hydrodynamics. The paper extends exploration into industrial applications, de tailing fabrication techniques and potential uses in vessels, aircraft, and water pipes for friction reduction. Three manufacturing approaches, bio-replicated forming, direct fabrication and indirect manufacturing, are examined, with 3D printing and photocon figuration technology emerging as promising alternatives. Investigations into mechani cal properties of shark skin fabrics reveal the impact of denticle size on tensile strength, stress and strain. Beyond drag reduction, the study highlights the shark skin's role in enhancing thrust and lift during locomotion. The paper identifies future research directions, emphasizing live shark testing and developing a synthetic skin with the help of 3D printing incorporating the bristling effect.

3.
Soft Robot ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813671

RESUMO

Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace and reflect the diversity of human society to address these broad challenges effectively. In recent years, gender inclusivity has received increasing attention, but it still remains a distant goal. In addition, awareness is rising around other dimensions of diversity, including nationality, religion, and politics. Unfortunately, despite the efforts, empirical evidence shows that the field has still a long way to go before achieving a sufficient level of equality, diversity, and inclusion across these spectra. This study focuses on the soft robotics community-a growing and relatively recent subfield-and it outlines the present state of equality and diversity panorama in this discipline. The article argues that its high interdisciplinary and accessibility make it a particularly welcoming branch of robotics. We discuss the elements that make this subdiscipline an example for the broader robotic field. At the same time, we recognize that the field should still improve in several ways and become more inclusive and diverse. We propose concrete actions that we believe will contribute to achieving this goal, and provide metrics to monitor its evolution.

4.
Soft Robot ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662447

RESUMO

Soft grippers have shown their ability to grasp fragile and irregularly shaped objects, but they often require external mechanisms for actuation, limiting their use in large-scale situations. Their limited capacity to handle loads and deformations also restricts their customized grasping capabilities. To address these issues, a model-based soft gripper with adaptable stiffness was proposed. The proposed actuator comprises a silicone chamber with separate units containing hydrogel spheres. These spheres exhibit temperature-triggered swelling and shrinking behaviors. In addition, variable stiffness strips embedded in the units are introduced as the stiffness variation method. The validated finite element method model was used as the model-based design approach to describe the hydrogel behaviors and explore the affected factors on the bending performance. The results demonstrate that the actuator can be programmed to respond in a desired way, and the stiffness variation method enhances bending stiffness significantly. Specifically, a direct correlation exists between the bending angle and hydrogel sphere layers, with a maximum of 128° achieved. In addition, incorporating gap configurations into the chamber membrane results in a maximum threefold increase in the bending angle. Besides, the membrane type minimally impacts the bending angle from 21.3° to 24.6°. In addition, the embedded variable stiffness strips substantially increase stiffness, resulting in a 30-fold rise in bending stiffness. In conclusion, the novel soft gripper actuator enables substantial bending and stiffness control through active actuation, showcasing the potential for enhancing soft gripper performance in complex and multiscale grasping scenarios.

5.
PLoS One ; 18(12): e0295585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096172

RESUMO

INTRODUCTION: Tissue extraction plays a crucial role in various medical disciplines, with aspiration catheters serving as the prevailing method. Unfortunately, these catheters face limitations such as clogging and dependence on tissue properties and device dimensions. Therefore, there is a pressing need for an improved tissue extraction device that enables efficient and reliable tissue removal during Minimally Invasive Surgery (MIS). METHODS: In this study, we present a novel tissue transport system that utilizes a cylindrical conveyor belt mechanism for reliable tissue transportation. We conducted experiments using a proof-of-principle prototype to explore the influence of tissue elasticity, rotational velocity, instrument orientation, and tissue shape on the transportation rate, efficiency, and reliability. Tissue phantoms with gelatine concentrations of 3, 9, and 12 wt% were employed to simulate a range of Young's moduli from 1 to 110 kPa. RESULTS: The mean transportation rates for these phantoms were 7.75±0.48, 8.43±1.50, and 8.90±0.56 g/min, respectively. Notably, all phantoms were transported successfully. The perfect reliability exhibited underscores the potential of our instrument as an alternative to aspiration catheters. CONCLUSION: This research presents a significant step forward in the field of tissue extraction, offering a promising approach for MIS with enhanced efficiency and reliability.


Assuntos
Catéteres , Procedimentos Cirúrgicos Minimamente Invasivos , Reprodutibilidade dos Testes , Módulo de Elasticidade , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA