Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 278: 119646, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048814

RESUMO

AIMS: SCN5A gene encodes the α-subunit of Nav1.5, mainly found in the human heart. SCN5A variants are the most common genetic alterations associated with Brugada syndrome (BrS). In rare cases, compound heterozygosity is observed; however, its functional consequences are poorly understood. We aimed to analyze the functional impact of de novo Nav1.5 mutations in compound heterozygosity in distinct alleles (G400R and T1461S positions) previously found in a patient with BrS. Moreover, we evaluated the potential benefits of quinidine to improve the phenotype of mutant Na+ channels in vitro. MATERIALS AND METHODS: The functional properties of human wild-type and Nav1.5 variants were evaluated using whole-cell patch-clamp and immunofluorescence techniques in transiently expressed human embryonic kidney (HEK293) cells. KEY FINDINGS: Both variants occur in the highly conservative positions of SCN5A. Although all variants were expressed in the cell membrane, a significant reduction in the Na+ current density (except for G400R alone, which was undetected) was observed along with abnormal biophysical properties, once the variants were expressed in homozygosis and heterozygosis. Interestingly, the incubation of transfected cells with quinidine partially rescued the biophysical properties of the mutant Na+ channel. SIGNIFICANCE: De novo compound heterozygosis mutations in SNC5A disrupt the Na+ macroscopic current. Quinidine could partially reverse the in vitro loss-of-function phenotype of Na+ current. Thus, our data provide, for the first time, a detailed biophysical characterization of dysfunctional Na+ channels linked to compound heterozygosity in BrS as well as the benefits of the pharmacological treatment using quinidine on the biophysical properties of Nav1.5.


Assuntos
Síndrome de Brugada/genética , Mutação com Perda de Função , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Sequência de Aminoácidos , Síndrome de Brugada/tratamento farmacológico , Síndrome de Brugada/metabolismo , Células HEK293 , Heterozigoto , Humanos , Mutação com Perda de Função/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Mutação Puntual/efeitos dos fármacos , Quinidina/farmacologia
2.
Braz J Med Biol Res ; 47(7): 560-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24863649

RESUMO

It has been demonstrated that carbon nanotubes (CNTs) associated with sodium hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible changes in cardiovascular function in male Wistar rats whose tooth sockets were treated with either CNTs or HY-CNTs (100 µg/mL, 0.1 mL). Blood pressure and heart rate were monitored in conscious rats 7 days after treatment. Cardiac function was evaluated using the Langendorff perfusion technique. The data showed no changes in blood pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no significant changes in cardiac function were found in any of the groups. To confirm these findings, experiments were conducted in rats injected intraperitoneally with a high concentration of either CNTs or HY-CNTs (0.75 mg/kg). The same parameters were analyzed and similar results were observed. The results obtained 7 days following injection indicate that the administration of low concentrations of CNTs or HY-CNTs directly into tooth sockets did not cause any significant change in cardiovascular function in the rats. The present findings support the possibility of using these biocomposites in humans.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ácido Hialurônico/toxicidade , Nanotubos de Carbono/toxicidade , Alvéolo Dental/efeitos dos fármacos , Animais , Fenômenos Fisiológicos Cardiovasculares , Circulação Coronária/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Ácido Hialurônico/administração & dosagem , Injeções Intraperitoneais , Masculino , Teste de Materiais , Microscopia Eletrônica de Transmissão , Boca/cirurgia , Perfusão/métodos , Ratos Wistar , Análise Espectral , Termogravimetria , Extração Dentária , Alvéolo Dental/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA