Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mucosal Immunol ; 17(1): 1-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952849

RESUMO

Type-3 innate lymphoid cells (ILC3) respond to localized environmental cues to regulate homeostasis and orchestrate immunity in the intestine. The intestinal epithelium is an important upstream regulator and downstream target of ILC3 signaling, however, the complexity of mucosal tissues can hinder efforts to define specific interactions between these two compartments. Here, we employ a reductionist co-culture system of murine epithelial small intestinal organoids (SIO) with ILC3 to uncover bi-directional signaling mechanisms that underlie intestinal homeostasis. We report that ILC3 induce global transcriptional changes in intestinal epithelial cells, driving the enrichment of secretory goblet cell signatures. We find that SIO enriched for goblet cells promote NKp46+ ILC3 and interleukin (IL)-22 expression, which can feedback to induce IL-22-mediated epithelial transcriptional signatures. However, we show that epithelial regulation of ILC3 in this system is contact-dependent and demonstrate a role for epithelial Delta-Like-Canonical-Notch-Ligand (Dll) in driving IL-22 production by ILC3, via subset-specific Notch1-mediated activation of T-bet+ ILC3. Finally, by interfering with Notch ligand-receptor dynamics, ILC3 appear to upregulate epithelial Atoh1 to skew secretory lineage determination in SIO-ILC3 co-cultures. This research outlines two complimentary bi-directional signaling modules between the intestinal epithelium and ILC3, which may be relevant in intestinal homeostasis and disease.


Assuntos
Interleucina 22 , Linfócitos , Camundongos , Animais , Imunidade Inata , Ligantes , Mucosa Intestinal , Receptores Notch/metabolismo
2.
Cell Rep ; 42(1): 111907, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640324

RESUMO

Human primordial germ cells (hPGCs), the precursors of sperm and eggs, are specified during weeks 2-3 after fertilization. Few studies on ex vivo and in vitro cultured human embryos reported plausible hPGCs on embryonic day (E) 12-13 and in an E16-17 gastrulating embryo. In vitro, hPGC-like cells (hPGCLCs) can be specified from the intermediary pluripotent stage or peri-gastrulation precursors. Here, we explore the broad spectrum of hPGCLC precursors and how different precursors impact hPGCLC development. We show that resetting precursors can give rise to hPGCLCs (rhPGCLCs) in response to BMP. Strikingly, rhPGCLCs co-cultured with human hindgut organoids progress at a pace reminiscent of in vivo hPGC development, unlike those derived from peri-gastrulation precursors. Moreover, rhPGCLC specification depends on both EOMES and TBXT, not just on EOMES as for peri-gastrulation hPGCLCs. Importantly, our study provides the foundation for developing efficient in vitro models of human gametogenesis.


Assuntos
Células Germinativas , Sêmen , Humanos , Masculino , Diferenciação Celular , Embrião de Mamíferos , Organoides
3.
Biomaterials ; 293: 121982, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640555

RESUMO

Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.


Assuntos
Hepatócitos , Oligopeptídeos , Humanos , Colforsina/metabolismo , Colforsina/farmacologia , Diferenciação Celular , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Hidrogéis/química
4.
Cell Rep ; 40(9): 111281, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044863

RESUMO

Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Animais , Diferenciação Celular , Humanos , Imunidade Inata , Imunoterapia , Linfócitos , Camundongos
5.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502785

RESUMO

The traditional view of immune cells is that their role within the body is to combat infections; however, it is becoming increasingly clear that they also perform tasks that are not classically associated with inflammation and pathogen clearance. These functions are executed deep within tissues, which are often poorly accessible and subject to environmental variability, especially in humans. Here, we discuss how multicellular 3D systems in a dish - organoids - are transitioning from a proof-of-principle approach to a timely, robust and reliable tool. Although we primarily focus on recent findings enabled by intestinal organoids co-cultured with lymphocytes, we posit that organoid co-culture systems will support future efforts to disentangle the interactions between a plethora of different cell types throughout development, homeostasis, regeneration and disease.


Assuntos
Intestinos , Organoides , Técnicas de Cocultura , Humanos , Células-Tronco
6.
J Vis Exp ; (181)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35404347

RESUMO

Complex co-cultures of organoids with immune cells provide a versatile tool for interrogating the bi-directional interactions that underpin the delicate balance of mucosal homeostasis. These 3D, multi-cellular systems offer a reductionist model for addressing multi-factorial diseases and resolving technical difficulties that arise when studying rare cell types such as tissue-resident innate lymphoid cells (ILCs). This article describes a murine system that combines small intestine organoids and small intestine lamina propria derived helper-like type-1 ILCs (ILC1s), which can be readily extended to other ILC or immune populations. ILCs are a tissue-resident population that is particularly enriched in the mucosa, where they promote homeostasis and rapidly respond to damage or infection. Organoid co-cultures with ILCs have already begun shedding light on new epithelial-immune signaling modules in the gut, revealing how different ILC subsets impact intestinal epithelial barrier integrity and regeneration. This protocol will enable further investigations into reciprocal interactions between epithelial and immune cells, which hold the potential to provide new insights into the mechanisms of mucosal homeostasis and inflammation.


Assuntos
Imunidade Inata , Linfócitos , Animais , Técnicas de Cocultura , Intestino Delgado , Linfócitos/metabolismo , Camundongos , Organoides
7.
Cell Stem Cell ; 28(9): 1505-1506, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478627

RESUMO

In this issue of Cell Stem Cell, Tallapragada et al. (2021) present an intestinal organoid culture system for high-throughput live imaging to investigate niche-independent mechanisms of crypt fission. They find that Piezo activity downregulates Lgr5 expression in stretched epithelial cells within inflated organoids, which form multiple new crypts upon collapse.


Assuntos
Células Epiteliais , Organoides , Contagem de Células
8.
ACS Biomater Sci Eng ; 7(9): 4293-4304, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34151570

RESUMO

Synthetic hydrogels formed from poly(ethylene glycol) (PEG) are widely used to study how cells interact with their extracellular matrix. These in vivo-like 3D environments provide a basis for tissue engineering and cell therapies but also for research into fundamental biological questions and disease modeling. The physical properties of PEG hydrogels can be modulated to provide mechanical cues to encapsulated cells; however, the impact of changing hydrogel stiffness on the diffusivity of solutes to and from encapsulated cells has received only limited attention. This is particularly true in selectively cross-linked "tetra-PEG" hydrogels, whose design limits network inhomogeneities. Here, we used a combination of theoretical calculations, predictive modeling, and experimental measurements of hydrogel swelling, rheological behavior, and diffusion kinetics to characterize tetra-PEG hydrogels' permissiveness to the diffusion of molecules of biologically relevant size as we changed polymer concentration, and thus hydrogel mechanical strength. Our models predict that hydrogel mesh size has little effect on the diffusivity of model molecules and instead predicts that diffusion rates are more highly dependent on solute size. Indeed, our model predicts that changes in hydrogel mesh size only begin to have a non-negligible impact on the concentration of a solute that diffuses out of hydrogels for the smallest mesh sizes and largest diffusing solutes. Experimental measurements characterizing the diffusion of fluorescein isothiocyanate (FITC)-labeled dextran molecules of known size aligned well with modeling predictions and suggest that doubling the polymer concentration from 2.5% (w/v) to 5% produces stiffer gels with faster gelling kinetics without affecting the diffusivity of solutes of biologically relevant size but that 10% hydrogels can slow their diffusion. Our findings provide confidence that the stiffness of tetra-PEG hydrogels can be modulated over a physiological range without significantly impacting the transport rates of solutes to and from encapsulated cells.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Difusão , Polietilenoglicóis , Engenharia Tecidual
9.
J Immunol ; 206(11): 2725-2739, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34021046

RESUMO

Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor-biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions.


Assuntos
Linfócitos/imunologia , MicroRNAs/imunologia , Animais , Células HEK293 , Homeostase , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética
10.
Nat Protoc ; 16(5): 2418-2449, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854255

RESUMO

Growing interest in exploring mechanically mediated biological phenomena has resulted in cell culture substrates and 3D matrices with variable stiffnesses becoming standard tools in biology labs. However, correlating stiffness with biological outcomes and comparing results between research groups is hampered by variability in the methods used to determine Young's (elastic) modulus, E, and by the inaccessibility of relevant mechanical engineering protocols to most biology labs. Here, we describe a protocol for measuring E of soft 2D surfaces and 3D hydrogels using atomic force microscopy (AFM) force spectroscopy. We provide instructions for preparing hydrogels with and without encapsulated live cells, and provide a method for mounting samples within the AFM. We also provide details on how to calibrate the instrument, and give step-by-step instructions for collecting force-displacement curves in both manual and automatic modes (stiffness mapping). We then provide details on how to apply either the Hertz or the Oliver-Pharr model to calculate E, and give additional instructions to aid the user in plotting data distributions and carrying out statistical analyses. We also provide instructions for inferring differential matrix remodeling activity in hydrogels containing encapsulated single cells or organoids. Our protocol is suitable for probing a range of synthetic and naturally derived polymeric hydrogels such as polyethylene glycol, polyacrylamide, hyaluronic acid, collagen, or Matrigel. Although sample preparation timings will vary, a user with introductory training to AFM will be able to use this protocol to characterize the mechanical properties of two to six soft surfaces or 3D hydrogels in a single day.


Assuntos
Técnicas de Cultura de Células , Módulo de Elasticidade , Hidrogéis/química , Microscopia de Força Atômica , Linhagem Celular , Propriedades de Superfície
11.
Nat Mater ; 20(2): 250-259, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32895507

RESUMO

Organoids can shed light on the dynamic interplay between complex tissues and rare cell types within a controlled microenvironment. Here, we develop gut organoid cocultures with type-1 innate lymphoid cells (ILC1) to dissect the impact of their accumulation in inflamed intestines. We demonstrate that murine and human ILC1 secrete transforming growth factor ß1, driving expansion of CD44v6+ epithelial crypts. ILC1 additionally express MMP9 and drive gene signatures indicative of extracellular matrix remodelling. We therefore encapsulated human epithelial-mesenchymal intestinal organoids in MMP-sensitive, synthetic hydrogels designed to form efficient networks at low polymer concentrations. Harnessing this defined system, we demonstrate that ILC1 drive matrix softening and stiffening, which we suggest occurs through balanced matrix degradation and deposition. Our platform enabled us to elucidate previously undescribed interactions between ILC1 and their microenvironment, which suggest that they may exacerbate fibrosis and tumour growth when enriched in inflamed patient tissues.


Assuntos
Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Organoides/metabolismo , Animais , Feminino , Humanos , Mucosa Intestinal/citologia , Linfócitos/citologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Organoides/citologia , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA