Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mar Pollut Bull ; 204: 116490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843703

RESUMO

The range of impacts of chemical dispersants on indigenous marine microbial communities and their activity remains poorly constrained. We tested the response of nearshore surface waters chronically exposed to oil leakage from a downed platform and supplied with nutrients by the Mississippi River to Corexit dispersant and nutrient additions. As assessed using 14C-labeled tracers, hexadecane mineralization potential was orders of magnitude higher in all unamended samples than in previously assessed bathypelagic communities. Nutrient additions stimulated microbial mortality but did not affect community composition and had no generalizable effect on hydrocarbon mineralization potential. By contrast, Corexit amendments caused a rapid shift in community composition and a drawdown of inorganic nitrogen and orthophosphate though no generalizable effect on hydrocarbon mineralization potential. The hydrocarbonoclastic community's response to dispersants is largely driven by the relative availability of organic substrates and nutrients, underscoring the role of environmental conditions and multiple interacting stressors on hydrocarbon degradation potential.


Assuntos
Hidrocarbonetos , Água do Mar , Poluentes Químicos da Água , Água do Mar/química , Poluentes Químicos da Água/análise , Hidrocarbonetos/análise , Nutrientes/análise , Tensoativos , Nitrogênio/análise , Alcanos/análise , Monitoramento Ambiental , Lipídeos
2.
Limnol Oceanogr ; 68(8): 1762-1774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37928964

RESUMO

Reports of aerobic biogenic methane (CH4) have generated new views about CH4 sources in nature. We examine this phenomenon in the free-flowing Yellowstone river wherein CH4 concentrations were tracked as a function of environmental conditions, phototrophic microorganisms (using chlorophyll a, Chl a, as proxy), as well as targeted methylated amines known to be associated with this process. CH4 was positively correlated with temperature and Chl a, although diurnal measurements showed CH4 concentrations were greatest during the night and lowest during maximal solar irradiation. CH4 efflux from the river surface was greater in quiescent edge waters (71-94 µmol m-2 d) than from open flowing current (~ 57 µmol m-2 d). Attempts to increase flux by disturbing the benthic environment in the quiescent water directly below (~ 1.0 m deep) or at varying distances (0-5 m) upstream of the flux chamber failed to increase surface flux. Glycine betaine (GB), dimethylamine and methylamine (MMA) were observed throughout the summer-long study, increasing during a period coinciding with a marked decline in Chl a, suggesting a lytic event led to their release; however, this did not correspond to increased CH4 concentrations. Spiking river water with GB or MMA yielded significantly greater CH4 than nonspiked controls, illustrating the metabolic potential of the river microbiome. In summary, this study provides evidence that: (1) phototrophic microorganisms are involved in CH4 synthesis in a river environment; (2) the river microbiome possesses the metabolic potential to convert methylated amines to CH4; and (3) river CH4 concentrations are dynamic diurnally as well as during the summer active months.

3.
Sci Rep ; 13(1): 19482, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945613

RESUMO

Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.S. east coast, an area of intense human activity including fisheries and naval operations, and potentially energy and mineral extraction. At one site, CWC mounds are arranged in lines that total over 150 km in length, making this one of the largest reef complexes discovered in the deep ocean. This site experiences rapid and extreme shifts in temperature between 4.3 and 10.7 °C, and currents approaching 1 m s-1. Carbon is transported to depth by mesopelagic micronekton and nutrient cycling on the reef results in some of the highest nitrate concentrations recorded in the region. Predictive models reveal expanded areas of highly suitable habitat that currently remain unexplored. Multidisciplinary exploration of this new site has expanded understanding of the cold-water coral niche, improved our accounting of the ecosystem services of the reef habitat, and emphasizes the importance of properly managing these systems.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Recifes de Corais , Água , Temperatura
4.
ISME Commun ; 3(1): 99, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736763

RESUMO

Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.

5.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36520069

RESUMO

The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.


Assuntos
Plâncton , Água , Golfo do México , Plâncton/genética , Metagenoma , Metano/metabolismo , Filogenia , Metagenômica , RNA Ribossômico 16S/genética
6.
Nat Commun ; 13(1): 7309, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437260

RESUMO

Methane is supersaturated in surface seawater and shallow coastal waters dominate global ocean methane emissions to the atmosphere. Aerobic methane oxidation (MOx) can reduce atmospheric evasion, but the magnitude and control of MOx remain poorly understood. Here we investigate methane sources and fates in the East China Sea and map global MOx rates in shallow waters by training machine-learning models. We show methane is produced during methylphosphonate decomposition under phosphate-limiting conditions and sedimentary release is also source of methane. High MOx rates observed in these productive coastal waters are correlated with methanotrophic activity and biomass. By merging the measured MOx rates with methane concentrations and other variables from a global database, we predict MOx rates and estimate that half of methane, amounting to 1.8 ± 2.7 Tg, is consumed annually in near-shore waters (<50 m), suggesting that aerobic methanotrophy is an important sink that significantly constrains global methane emissions.


Assuntos
Metano , Água do Mar , Oxirredução , Atmosfera , Difusão
7.
Microbiome ; 9(1): 191, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548108

RESUMO

BACKGROUND: Biosurfactants are naturally derived products that play a similar role to synthetic dispersants in oil spill response but are easily biodegradable and less toxic. Using a combination of analytical chemistry, 16S rRNA amplicon sequencing and simulation-based approaches, this study investigated the microbial community dynamics, ecological drivers, functional diversity and robustness, and oil biodegradation potential of a northeast Atlantic marine microbial community to crude oil when exposed to rhamnolipid or synthetic dispersant Finasol OSR52. RESULTS: Psychrophilic Colwellia and Oleispira dominated the community in both the rhamnolipid and Finasol OSR52 treatments initially but later community structure across treatments diverged significantly: Rhodobacteraceae and Vibrio dominated the Finasol-amended treatment, whereas Colwellia, Oleispira, and later Cycloclasticus and Alcanivorax, dominated the rhamnolipid-amended treatment. Key aromatic hydrocarbon-degrading bacteria, like Cycloclasticus, was not observed in the Finasol treatment but it was abundant in the oil-only and rhamnolipid-amended treatments. Overall, Finasol had a significant negative impact on the community diversity, weakened the taxa-functional robustness of the community, and caused a stronger environmental filtering, more so than oil-only and rhamnolipid-amended oil treatments. Rhamnolipid-amended and oil-only treatments had the highest functional diversity, however, the overall oil biodegradation was greater in the Finasol treatment, but aromatic biodegradation was highest in the rhamnolipid treatment. CONCLUSION: Overall, the natural marine microbial community in the northeast Atlantic responded differently to crude oil dispersed with either synthetic or biogenic surfactants over time, but oil degradation was more enhanced by the synthetic dispersant. Collectively, our results advance the understanding of how rhamnolipid biosurfactants and synthetic dispersant Finasol affect the natural marine microbial community in the FSC, supporting their potential application in oil spills. Video abstract.


Assuntos
Poluição por Petróleo , Petróleo , Bactérias/genética , Biodegradação Ambiental , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Tensoativos
8.
PLoS One ; 16(9): e0256321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495995

RESUMO

The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.


Assuntos
Archaea/genética , Bactérias/genética , Fungos/genética , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Biodiversidade , California , Meio Ambiente , Sedimentos Geológicos/química , Fontes Hidrotermais/química , Filogenia , Análise de Sequência de DNA/métodos
9.
Front Microbiol ; 12: 633649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643265

RESUMO

Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface.

10.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727364

RESUMO

Hydrocarbon-degrading bacteria naturally degrade and remove petroleum pollutants, yet baselines do not currently exist for these critical microorganisms in many regions where the oil and gas industry is active. Furthermore, understanding how a baseline community changes across the seasons and its potential to respond to an oil spill event are prerequisites for predicting their response to elevated hydrocarbon exposures. In this study, 16S rRNA gene-based profiling was used to assess the spatiotemporal variability of baseline bacterioplankton community composition in the Faroe-Shetland Channel (FSC), a deepwater sub-Arctic region where the oil and gas industry has been active for the last 40 years. Over a period of 2 years, we captured the diversity of the bacterioplankton community within distinct water masses (defined by their temperature and salinity) that have a distinct geographic origin (Atlantic or Nordic), depth, and direction of flow. We demonstrate that bacterioplankton communities were significantly different across water samples of contrasting origin and depth. Taxa of known hydrocarbon-degrading bacteria were observed at higher-than-anticipated abundances in water masses originating in the Nordic Seas, suggesting these organisms are sustained by an unconfirmed source of oil input in that region. In the event of an oil spill, our results suggest that the response of these organisms is severely hindered by the low temperatures and nutrient levels that are typical for the FSC.IMPORTANCE Oil spills at sea are one of the most disastrous anthropogenic pollution events, with the Deepwater Horizon spill providing a testament to how profoundly the health of marine ecosystems and the livelihood of its coastal inhabitants can be severely impacted by spilled oil. The fate of oil in the environment is largely dictated by the presence and activities of natural communities of oil-degrading bacteria. While a significant effort was made to monitor and track the microbial response and degradation of the oil in the water column in the wake of the Deepwater Horizon spill, the lack of baseline data on the microbiology of the Gulf of Mexico confounded scientists' abilities to provide an accurate assessment of how the system responded relative to prespill conditions. This data gap highlights the need for long-term microbial ocean observatories in regions at high risk of oil spills. Here, we provide the first microbiological baseline established for a subarctic region experiencing high oil and gas industry activity, the northeast Atlantic, but with no apparent oil seepage or spillage. We also explore the presence, relative abundances, and seasonal dynamics of indigenous hydrocarbon-degrading communities. These data will advance the development of models to predict the behavior of such organisms in the event of a major oil spill in this region and potentially impact bioremediation strategies by enhancing the activities of these organisms in breaking down the oil.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Microbiota , Regiões Árticas , Oceano Atlântico , Bactérias/classificação , Ecossistema , Variação Genética , Microbiota/genética , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Salinidade , Países Escandinavos e Nórdicos , Água do Mar/microbiologia , Temperatura
11.
Extremophiles ; 25(2): 159-172, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590336

RESUMO

Little is known about microbial ecosystems of interior Antarctica, if indeed such ecosystems exist. Although considerable research has assessed microorganisms indigenous to coastal regions of Antarctica, particularly their lakes, ponds, and soils, to our knowledge only one characterized bacterium, a strain of Pseudomonas, has been isolated from South Pole ice or snow. Metagenomic community analyses described in this work and elsewhere reveal that a diversity of bacteria exists in inland polar snows, yet attempts to culture and characterize these microbes from this extreme environment have been few to date. In this molecular and culture-dependent investigation of the microbiology of inland Antarctica, we enriched and isolated two new strains of bacteria and one strain of yeast (Fungi) from South Pole snow samples. The bacteria were of the genera Methylobacterium and Sphingomonas, and the yeast grouped with species of Naganishia (class Tremellocytes). In addition to phylogenetic analyses, characterization of these isolates included determinations of cell morphology, growth as a function of temperature, salinity tolerance, and carbon and energy source versatility. All organisms were found to be cold-adapted, and the yeast strain additionally showed considerable halotolerance. These descriptions expand our understanding of the diversity and metabolic activities of snowbound microorganisms of interior Antarctica.


Assuntos
Bactérias , Ecossistema , Regiões Antárticas , Bactérias/genética , Fungos , Filogenia
12.
Environ Microbiol ; 23(2): 641-651, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32506654

RESUMO

Methane is a potent greenhouse gas; methane production and consumption within seafloor sediments has generated intense interest. Anaerobic oxidation of methane (AOM) and methanogenesis (MOG) primarily occur at the depth of the sulfate-methane transition zone or underlying sediment respectively. Methanogenesis can also occur in the sulfate-reducing sediments through the utilization of non-competitive methylated compounds; however, the occurrence and importance of this process are not fully understood. Here, we combined a variety of data, including geochemical measurements, rate measurements and molecular analyses to demonstrate the presence of a cryptic methane cycle in sulfate-reducing sediments from the continental shelf of the northern South China Sea. The abundance of methanogenic substrates as well as the high MOG rates from methylated compounds indicated that methylotrophic methanogenesis was the dominant methanogenic pathway; this conclusion was further supported by the presence of the methylotrophic genus Methanococcoides. High potential rates of AOM were observed in the sediments, indicating that methane produced in situ could be oxidized simultaneously by AOM, presumably by ANME-2a/b as indicated by 16S rRNA gene analysis. A significant correlation between the relative abundance of methanogens and methanotrophs was observed over sediment depth, indicating that methylotrophic methanogenesis could potentially fuel AOM in this environment. In addition, higher potential rates of AOM than sulfate reduction rates at in situ methane conditions were observed, making alternative electron acceptors important to support AOM in sulfate-reducing sediment. AOM rates were stimulated by the addition of Fe/Mn oxides, suggesting AOM could be partially coupled to metal oxide reduction. These results suggest that methyl-compounds driven methane production drives a cryptic methane cycling and fuels AOM coupled to the reduction of sulfate and other electron acceptors.


Assuntos
Ciclo do Carbono , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Methanosarcinaceae/metabolismo , Sulfatos/metabolismo , Anaerobiose , Carbono/metabolismo , China , Sedimentos Geológicos/química , Methanosarcinaceae/classificação , Methanosarcinaceae/genética , Oxirredução , Água do Mar/química , Água do Mar/microbiologia
13.
PLoS One ; 15(4): e0231676, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315331

RESUMO

In deep ocean hypersaline basins, the combination of high salinity, unusual ionic composition and anoxic conditions represents significant challenges for microbial life. We used geochemical porewater characterization and DNA sequencing based taxonomic surveys to enable environmental and microbial characterization of anoxic hypersaline sediments and brines in the Orca Basin, the largest brine basin in the Gulf of Mexico. Full-length bacterial 16S rRNA gene clone libraries from hypersaline sediments and the overlying brine were dominated by the uncultured halophilic KB1 lineage, Deltaproteobacteria related to cultured sulfate-reducing halophilic genera, and specific lineages of heterotrophic Bacteroidetes. Archaeal clones were dominated by members of the halophilic methanogen genus Methanohalophilus, and the ammonia-oxidizing Marine Group I (MG-I) within the Thaumarchaeota. Illumina sequencing revealed higher phylum- and subphylum-level complexity, especially in lower-salinity sediments from the Orca Basin slope. Illumina and clone library surveys consistently detected MG-I Thaumarchaeota and halotolerant Deltaproteobacteria in the hypersaline anoxic sediments, but relative abundances of the KB1 lineage differed between the two sequencing methods. The stable isotopic composition of dissolved inorganic carbon and methane in porewater, and sulfate concentrations decreasing downcore indicated methanogenesis and sulfate reduction in the anoxic sediments. While anaerobic microbial processes likely occur at low rates near their maximal salinity thresholds in Orca Basin, long-term accumulation of reaction products leads to high methane concentrations and reducing conditions within the Orca Basin brine and sediments.


Assuntos
Ecossistema , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , DNA Arqueal/classificação , DNA Arqueal/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/classificação , Golfo do México , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/química , Sulfatos/química
14.
Sci Adv ; 6(7): eaaw8863, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32095516

RESUMO

Major oil spills are catastrophic events that immensely affect the environment and society, yet determining their spatial extent is a highly complex task. During the Deepwater Horizon (DWH) blowout, ~149,000 km2 of the Gulf of Mexico (GoM) was covered by oil slicks and vast areas of the Gulf were closed for fishing. Yet, the satellite footprint does not necessarily capture the entire oil spill extent. Here, we use in situ observations and oil spill transport modeling to examine the full extent of the DWH spill, focusing on toxic-to-biota (i.e., marine organisms) oil concentration ranges. We demonstrate that large areas of the GoM were exposed to invisible and toxic oil that extended beyond the boundaries of the satellite footprint and the fishery closures. With a global increase in petroleum production-related activities, a careful assessment of oil spills' full extent is necessary to maximize environmental and public safety.

15.
Sci Rep ; 9(1): 13847, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554864

RESUMO

The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.

16.
Nature ; 568(7750): 108-111, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918404

RESUMO

Ethane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps1-3, and through ethane-dependent sulfate reduction in slurries4-7. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown8. Here we describe ethane-oxidizing archaea that were obtained by specific enrichment over ten years, and analyse these archaea using phylogeny-based fluorescence analyses, proteogenomics and metabolite studies. The co-culture, which oxidized ethane completely while reducing sulfate to sulfide, was dominated by an archaeon that we name 'Candidatus Argoarchaeum ethanivorans'; other members were sulfate-reducing Deltaproteobacteria. The genome of Ca. Argoarchaeum contains all of the genes that are necessary for a functional methyl-coenzyme M reductase, and all subunits were detected in protein extracts. Accordingly, ethyl-coenzyme M (ethyl-CoM) was identified as an intermediate by liquid chromatography-tandem mass spectrometry. This indicated that Ca. Argoarchaeum initiates ethane oxidation by ethyl-CoM formation, analogous to the recently described butane activation by 'Candidatus Syntrophoarchaeum'9. Proteogenomics further suggests that oxidation of intermediary acetyl-CoA to CO2 occurs through the oxidative Wood-Ljungdahl pathway. The identification of an archaeon that uses ethane (C2H6) fills a gap in our knowledge of microorganisms that specifically oxidize members of the homologous alkane series (CnH2n+2) without oxygen. Detection of phylogenetic and functional gene markers related to those of Ca. Argoarchaeum at deep-sea gas seeps10-12 suggests that archaea that are able to oxidize ethane through ethyl-CoM are widespread members of the local communities fostered by venting gaseous alkanes around these seeps.


Assuntos
Organismos Aquáticos/metabolismo , Archaea/metabolismo , Etano/metabolismo , Anaerobiose , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Deltaproteobacteria/metabolismo , Etano/química , Gases/química , Gases/metabolismo , Golfo do México , Metano/biossíntese , Oxirredução , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Sulfetos/metabolismo
17.
Environ Microbiol ; 20(12): 4543-4554, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209867

RESUMO

One carbon (C1) metabolism plays an important role in marine carbon cycling but the dynamics and modes of C1 transformations are not fully understood. We made contemporaneous measurements of methylamine and methanol metabolism to elucidate the role of C1 compounds as sources of carbon, energy and nitrogen. Methanol and methylamine were predominantly used as an energy source in offshore waters (oxidation rate constant: kmethanol : 0.02-0.10 day-1 ; kmethylamine : 0.01-0.18 day-1 ), but were also important sources of biomass carbon in coastal waters (assimilation rate constant: kmethanol : 0.04-0.10 day-1 ; kmethylamine : 0.01-0.05 day-1 ). The relative extent of assimilation versus oxidation for these substrates correlated positively with chlorophyll, nutrients and heterotrophic bacterial production. Methanol oxidation and assimilation were stimulated significantly by nutrient addition. In contrast, methylamine metabolism was inhibited by ammonium or nitrate, suggesting that methylamine served as a nitrogen source. A preliminary metagenomic survey revealed a diverse population of putative C1-utilizing microorganisms. These results show that the remineralization of methylamine could provide both C and N sources for microbes. Both methanol and methylamine contribute to microbial energetic and carbon substrate demands with a distinctly different signature in nearshore versus offshore environments.


Assuntos
Carbono/metabolismo , Metanol/metabolismo , Metilaminas/metabolismo , Nitrogênio/metabolismo , Microbiologia da Água , Ciclo do Carbono , Golfo do México , Metagenômica , Ciclo do Nitrogênio
18.
Sci Rep ; 8(1): 9057, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955123

RESUMO

More than 2,000 historic shipwrecks spanning 500 years of history, rest on the Gulf of Mexico seafloor. Shipwrecks serve as artificial reefs and hotspots of biodiversity by providing hard substrate, something rare in deep ocean regions. The Deepwater Horizon (DWH) spill discharged crude oil into the deep Gulf. Because of physical, biological, and chemical interactions, DWH oil was deposited on the seafloor, where historic shipwrecks are present. This study examined sediment microbiomes at seven historic shipwrecks. Steel-hulled, World War II-era shipwrecks and wooden-hulled, 19th century shipwrecks within and outside of the surface oiled area and subsurface plume were examined. Analysis of 16S rRNA sequence libraries, sediment radiocarbon age data, sedimentation rates, and hydrocarbons revealed that the German U-boat U-166 and the wooden-hulled sailing vessel known as the Mardi Gras Wreck, both in the Mississippi Canyon leasing area, were exposed to deposited oil during a rapid sedimentation event. Impacts to shipwreck microbiomes included a significant increase in Piscirickettsiaceae-related sequences in surface sediments, and reduced biodiversity relative to unimpacted sites. This study is the first to address the impact of the spill on shipwreck-associated microbiomes, and to explore how shipwrecks themselves influence microbiome diversity in the deep sea.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Água do Mar/microbiologia , Navios , Poluentes Químicos da Água/efeitos adversos , Archaea/genética , Sequência de Bases , Amplificação de Genes , Golfo do México , Hidrocarbonetos/análise , Petróleo/análise , Poluição por Petróleo/análise , Filogenia , Piscirickettsiaceae/genética , RNA Ribossômico 16S/genética , Datação Radiométrica , Poluentes Químicos da Água/análise
19.
Nat Commun ; 9(1): 23, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295998

RESUMO

Size generally dictates metabolic requirements, trophic level, and consequently, ecosystem structure, where inefficient energy transfer leads to bottom-heavy ecosystem structure and biomass decreases as individual size (or trophic level) increases. However, many animals deviate from simple size-based predictions by either adopting generalist predatory behavior, or feeding lower in the trophic web than predicted from their size. Here we show that generalist predatory behavior and lower trophic feeding at large body size increase overall biomass and shift ecosystems from a bottom-heavy pyramid to a top-heavy hourglass shape, with the most biomass accounted for by the largest animals. These effects could be especially dramatic in the ocean, where primary producers are the smallest components of the ecosystem. This approach makes it possible to explore and predict, in the past and in the future, the structure of ocean ecosystems without biomass extraction and other impacts.


Assuntos
Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Modelos Biológicos , Animais , Antozoários/classificação , Antozoários/fisiologia , Biomassa , Tamanho Corporal , Comportamento Alimentar/fisiologia , Pesqueiros/estatística & dados numéricos , Pesqueiros/tendências , Peixes/classificação , Oceanos e Mares , Plâncton/classificação , Plâncton/fisiologia , Dinâmica Populacional , Comportamento Predatório/fisiologia
20.
Extremophiles ; 21(5): 891-901, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681112

RESUMO

Extremely cold microbial habitats on Earth (those below -30 °C) are rare and have not been surveyed for microbes as extensively as environments in the 0 to -20 °C range. Using cryoprotected growth media incubated at -5 °C, we enriched a cold-active Pseudomonas species from -50 °C ice collected from a utility tunnel for wastewater pipes under Amundsen-Scott South Pole Station, Antarctica. The isolate, strain UC-1, is related to other cold-active Pseudomonas species, most notably P. psychrophila, and grew at -5 °C to +34-37 °C; growth of UC-1 at +3 °C was significantly faster than at +34 °C. Strain UC-1 synthesized a surface exopolymer and high levels of unsaturated fatty acids under cold growth conditions. A 16S rRNA gene diversity screen of the ice sample that yielded strain UC-1 revealed over 1200 operational taxonomic units (OTUs) distributed across eight major classes of Bacteria. Many of the OTUs were Clostridia and Bacteriodia and some of these were probably of wastewater origin. However, a significant fraction of the OTUs were Proteobacteria and Actinobacteria of likely environmental origin. Our results shed light on the lower temperature limits to life and the possible existence of functional microbial communities in ultra-cold environments.


Assuntos
Frio Extremo , Microbiota , Pseudomonas/metabolismo , Águas Residuárias/microbiologia , Actinobacteria/genética , Actinobacteria/metabolismo , Regiões Antárticas , Clostridium/genética , Clostridium/metabolismo , Ácidos Graxos Insaturados/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteobactérias/genética , Proteobactérias/metabolismo , Pseudomonas/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA