Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Environ Sci ; 19(3): 163-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16944770

RESUMO

OBJECTIVE: To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. METHODS: The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. RESULTS: The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. CONCLUSION: The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.


Assuntos
Reatores Biológicos , Simulação por Computador , Microesferas , Movimento (Física) , Rotação , Engenharia Tecidual/métodos , Porosidade , Reologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA