Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12245, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699235

RESUMO

Manual restriction of head movement, or head-fixation, of awake rodents allows for sophisticated investigation of neural circuits in vivo, that would otherwise be impossible in completely freely moving animals. While it is known that head-fixation induces stress, the scale of this stress and habituation dynamics remain unclear. We used the Mobile HomeCage system (Neurotar Ltd, Finland) where animals have their heads fixed to an aluminum frame but are otherwise freely moving in an ultralight carbon container floating above an air-dispensing base. For 25 consecutive days, mice were head-fixed while standing on the air-lifted platform for 2 h per day and blood samples were taken periodically to measure variation in the stress-related hormone, corticosterone. We showed that the initial increase in corticosterone concentration is followed by a return to control level throughout the days of head-fixed training. We also found a locomotor correlate of this drop. We conducted a battery of stress-sensitive behavioral paradigms in freely-moving mice that revealed minor differences following chronic head-fixation. Finally, we analyzed motor-skill learning in the head-fixed setup with a floating container. We believe that our results may contribute to better interpretation of past literature and future in vivo experiments using head-fixed animals.


Assuntos
Comportamento Animal/fisiologia , Habituação Psicofisiológica/fisiologia , Movimentos da Cabeça/fisiologia , Cabeça/fisiologia , Aprendizagem/fisiologia , Locomoção/fisiologia , Destreza Motora/fisiologia , Animais , Corticosterona/metabolismo , Finlândia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vigília/fisiologia
2.
Neuron ; 96(2): 476-489.e5, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024667

RESUMO

Changes in cortical and striatal function underlie the transition from novel actions to refined motor skills. How discrete, anatomically defined corticostriatal projections function in vivo to encode skill learning remains unclear. Using novel fiber photometry approaches to assess real-time activity of associative inputs from medial prefrontal cortex to dorsomedial striatum and sensorimotor inputs from motor cortex to dorsolateral striatum, we show that associative and sensorimotor inputs co-engage early in action learning and disengage in a dissociable manner as actions are refined. Disengagement of associative, but not sensorimotor, inputs predicts individual differences in subsequent skill learning. Divergent somatic and presynaptic engagement in both projections during early action learning suggests potential learning-related in vivo modulation of presynaptic corticostriatal function. These findings reveal parallel processing within associative and sensorimotor circuits that challenges and refines existing views of corticostriatal function and expose neuronal projection- and compartment-specific activity dynamics that encode and predict action learning.


Assuntos
Corpo Estriado/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Animais , Corpo Estriado/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Motor/química , Destreza Motora , Rede Nervosa/química , Fotometria/métodos
3.
Nat Commun ; 8(1): 293, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819097

RESUMO

The brain cytoplasmic (BC1) RNA is a non-coding RNA (ncRNA) involved in neuronal translational control. Absence of BC1 is associated with altered glutamatergic transmission and maladaptive behavior. Here, we show that pyramidal neurons in the barrel cortex of BC1 knock out (KO) mice display larger excitatory postsynaptic currents and increased spontaneous activity in vivo. Furthermore, BC1 KO mice have enlarged spine heads and postsynaptic densities and increased synaptic levels of glutamate receptors and PSD-95. Of note, BC1 KO mice show aberrant structural plasticity in response to whisker deprivation, impaired texture novel object recognition and altered social behavior. Thus, our study highlights a role for BC1 RNA in experience-dependent plasticity and learning in the mammalian adult neocortex, and provides insight into the function of brain ncRNAs regulating synaptic transmission, plasticity and behavior, with potential relevance in the context of intellectual disabilities and psychiatric disorders.Brain cytoplasmic (BC1) RNA is a non-coding RNA that has been implicated in translational regulation, seizure, and anxiety. Here, the authors show that in the cortex, BC1 RNA is required for sensory deprivation-induced structural plasticity of dendritic spines, as well as for correct sensory learning and social behaviors.


Assuntos
Aprendizagem/fisiologia , Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , RNA Citoplasmático Pequeno/genética , Animais , Sequência de Bases , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hibridização in Situ Fluorescente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Neocórtex/citologia , Neocórtex/metabolismo , Plasticidade Neuronal/genética , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Privação Sensorial/fisiologia , Homologia de Sequência do Ácido Nucleico , Comportamento Social , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Vibrissas/metabolismo , Vibrissas/fisiologia
4.
Neurobiol Dis ; 96: 201-215, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27616423

RESUMO

Fragile X syndrome (FXS) is a common inherited form of intellectual disability caused by the absence or reduction of the fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. In humans, one symptom of FXS is hypersensitivity to sensory stimuli, including touch. We used a mouse model of FXS (Fmr1 KO) to study sensory processing of tactile information conveyed via the whisker system. In vivo electrophysiological recordings in somatosensory barrel cortex showed layer-specific broadening of the receptive fields at the level of layer 2/3 but not layer 4, in response to whisker stimulation. Furthermore, the encoding of tactile stimuli at different frequencies was severely affected in layer 2/3. The behavioral effect of this broadening of the receptive fields was tested in the gap-crossing task, a whisker-dependent behavioral paradigm. In this task the Fmr1 KO mice showed differences in the number of whisker contacts with platforms, decrease in the whisker sampling duration and reduction in the whisker touch-time while performing the task. We propose that the increased excitability in the somatosensory barrel cortex upon whisker stimulation may contribute to changes in the whisking strategy as well as to other observed behavioral phenotypes related to tactile processing in Fmr1 KO mice.


Assuntos
Vias Aferentes/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Córtex Somatossensorial/patologia , Tato/fisiologia , Vibrissas/inervação , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Humanos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tempo de Reação/genética
5.
Science ; 349(6246): 424-7, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26206934

RESUMO

Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)­a molecule implicated in psychiatric disorders­resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Potenciação de Longa Duração/genética , Transtornos Mentais/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Idade de Início , Animais , Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Transtornos Mentais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA