Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259420

RESUMO

The human epidermal growth factor receptor (EGFR) is closely related to several cancer-promoting processes and overexpressed on a variety of tumor types, rendering it an important target structure for the imaging and therapy of several malignancies. To date, approaches to develop peptidic radioligands able to specifically address and visualize EGFR-positive tumors have been of limited success. Most of the attempts were based on the lead GE11, as this peptide was previously described to be a highly potent EGFR-specific agent. However, since it has recently been shown that GE11 exhibits an insufficient affinity to the EGFR in monomeric form to be suitable as a basis for the development of tracers based on it, in the present work we investigated which other peptides might be suitable as lead structures for the development of EGFR-specific peptidic radiotracers. For this purpose, we developed 68Ga-labeled radioligands based on the peptides D4, P1, P2, CPP, QRH, EGBP and Pep11, having been described before as EGFR-specific. In addition, we also tested three truncated versions of the endogenous EGFR ligand hEGF (human epidermal growth factor) with respect to their ability to specifically target the EGFR with high affinity. Therefore, chelator-modified labeling precursors of the mentioned peptides were synthesized, radiolabeled with 68Ga and the obtained radioligands were evaluated for their hydrophilicity/lipophilicity, stability against degradation by human serum peptidases, in vitro tumor cell uptake, and receptor affinity in competitive displacement experiments on EGFR-positive A431 cells. Although all NODA-GA-modified (NODA-GA: (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) labeling precursors could be obtained more or less efficient in yields between 5 and 74%, the 68Ga-radiolabeling proved to be unsuccessful for two of the three truncated versions of hEGF ([68Ga]Ga-8 and [68Ga]Ga-9), producing several side-products. For the other agents [68Ga]Ga-1-[68Ga]Ga-7, [68Ga]Ga-10 and [68Ga]Ga-11, high radiochemical yields and purities of ≥98% and molar activities of up to 114 GBq/µmol were obtained. In the assay investigating the radiopeptide susceptibilities against serum peptidase degradation, the EGBP-based agent demonstrated a limited stability with a half-life of only 66.4 ± 3.0 min, whereas the other tracers showed considerably higher stabilities of up to an 8000 min half-life. Finally, all radiotracer candidates were evaluated in terms of tumor cell internalization and receptor binding potential on EGFR-positive A431 cell. In these experiments, all developed agents failed to show an EGFR-specific tumor cell uptake or a relevant EGFR-affinity. By contrast, the positive controls tested under identical conditions, [125I]I-hEGF and hEGF demonstrated the expected high EGFR-specific tumor cell uptake (33.6% after 1 h, being reduced to 1.9% under blocking conditions) and affinity (IC50 value of 15.2 ± 3.3 nM). Thus, these results indicate that none of the previously described peptidic agents developed for EGFR targeting appears to be a reasonable choice as a lead structure for the development of radiopeptides for targeting of EGFR-positive tumors. Likewise, the tested truncated variants of the endogenous hEGF do not seem to be promising alternatives for this purpose.

2.
ACS Omega ; 8(2): 2793-2807, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687076

RESUMO

Radiolabeled heterobivalent peptidic ligands (HBPLs) are a highly promising compound class for the sensitive and specific visualization of tumors as they often exhibit superior properties compared to their monospecific counterparts and are able to concomitantly or complementarily address different receptor types. The combination of two receptor-specific agents targeting the epidermal growth factor receptor (EGFR) and the integrin αvß3 in one HBPL would constitute a synergistic combination of binding motifs as these two receptor types are concurrently overexpressed on several human tumor types and are closely associated with disease progression and metastasis. Here, we designed and synthesized two heterobivalent radioligands consisting of the EGFR-specific peptide GE11 and αvß3-specific cyclic RGD peptides, bearing a (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid chelator for efficient radiolabeling and linkers of different lengths between both peptides. Both HBPLs were radiolabeled with 68Ga3+ in high radiochemical yields, purities of 96-99%, and molar activities of 36-88 GBq/µmol. [68Ga]Ga-1 and [68Ga]Ga-2 were evaluated for their log D(7.4) and stability toward degradation by human serum peptidases, showing a high hydrophilicity for both agents of -3.07 ± 0.01 and -3.44 ± 0.08 as well as a high stability toward peptidase degradation in human serum with half-lives of 272 and 237 min, respectively. Further on, the in vitro receptor binding profiles of both HBPLs to the target EGF and integrin αvß3 receptors were assessed on EGFR-positive A431 and αvß3-positive U87MG cells. Finally, we investigated the in vivo pharmacokinetics of HBPL [68Ga]Ga-1 by positron emission tomography/computed tomography imaging in A431 tumor-bearing xenograft mice to assess its potential for the receptor-specific visualization of EGFR- and/or αvß3-expressing tumors. In these experiments, [68Ga]Ga-1 demonstrated a tumor uptake of 2.79 ± 1.66% ID/g, being higher than in all other organs and tissues apart from kidneys and blood at 2 h p.i. Receptor blocking studies revealed the observed tumor uptake to be solely mediated by integrin αvß3, whereas no contribution of the GE11 peptide sequence to tumor uptake via the EGFR could be determined. Thus, the approach to develop radiolabeled EGFR- and integrin αvß3-bispecific HBPLs is in general feasible although another peptide lead structure than GE11 should be used as the basis for the EGFR-specific part of the agents.

3.
ACS Omega ; 7(31): 27690-27702, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967067

RESUMO

The epidermal growth factor receptor (EGFR) is closely associated with tumor development and progression and thus an important target structure for imaging and therapy of various tumors. As a result of its important role in malignancies of various origins and the fact that antibody-based compounds targeting the EGFR have significant drawbacks in terms of in vivo pharmacokinetics, several attempts have been made within the last five years to develop peptide-based EGFR-specific radioligands based on the GE11 scaffold. However, none of these approaches have shown convincing results so far, which has been proposed to be attributed to different potential challenges associated with the GE11 lead structure: first, an aggregation of radiolabeled peptides, which might prevent their interaction with their target receptor, or second, a relatively low affinity of monomeric GE11, necessitating its conversion into a multimeric or polymeric form to achieve adequate EGFR-targeting properties. In the present work, we investigated if these aforementioned points are indeed critical and if the EGFR-targeting ability of GE11 can be improved by choosing an appropriate hydrophilic molecular design or a peptide multimer system to obtain a promising radiopeptide for the visualization of EGFR-overexpressing malignancies by positron emission tomography (PET). For this purpose, we developed several monovalent 68Ga-labeled GE11-based agents, a peptide homodimer and a homotetramer to overcome the challenges associated with GE11. The developed ligands were successfully labeled with 68Ga3+ in high radiochemical yields of ≥97% and molar activities of 41-104 GBq/µmol. The resulting radiotracers presented log D(7.4) values between -2.17 ± 0.21 and -3.79 ± 0.04 as well as a good stability in human serum with serum half-lives of 112 to 217 min for the monovalent radiopeptides and 84 and 62 min for the GE11 homodimer and homotetramer, respectively. In the following in vitro studies, none of the 68Ga-labeled radiopeptides demonstrated a considerable EGF receptor-specific uptake in EGFR-positive A431 cells. Moreover, none of the agents was able to displace [125I]I-EGF from the EGFR in competitive displacement assays in the same cell line in concentrations of up to 1 mM, whereas the endogenous receptor ligand hEGF demonstrated a high affinity of 15.2 ± 3.3 nM. These results indicate that it is not the aggregation of the GE11 sequence that seems to be the factor limiting the usefulness of the peptide as basis for radiotracer design but the limited affinity of monovalent and small homomultivalent GE11-based radiotracers to the EGFR. This highlights that the development of small-molecule GE11-based radioligands is not promising.

4.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944969

RESUMO

In this work, five different chelating agents, namely DFO, CTH-36, DFO*, 3,4,3-(LI-1,2-HOPO) and DOTA-GA, were compared with regard to the relative kinetic inertness of their corresponding 89Zr complexes to evaluate their potential for in vivo application and stable 89Zr complexation. The chelators were identically functionalized with tetrazines, enabling a fully comparable, efficient, chemoselective and biorthogonal conjugation chemistry for the modification of any complementarily derivatized biomolecules of interest. A small model peptide of clinical relevance (TCO-c(RGDfK)) was derivatized via iEDDA click reaction with the developed chelating agents (TCO = trans-cyclooctene and iEDDA = inverse electron demand Diels-Alder). The bioconjugates were labeled with 89Zr4+, and their radiochemical properties (labeling conditions and efficiency), logD(7.4), as well as the relative kinetic inertness of the formed complexes, were compared. Furthermore, density functional theory (DFT) calculations were conducted to identify potential influences of chelator modification on complex formation and geometry. The results of the DFT studies showed-apart from the DOTA-GA derivative-no significant influence of chelator backbone functionalization or the conjugation of the chelator tetrazines by iEDDA. All tetrazines could be efficiently introduced into c(RGDfK), demonstrating the high suitability of the agents for efficient and chemoselective bioconjugation. The DFO-, CTH-36- and DFO*-modified c(RGDfK) peptides showed a high radiolabeling efficiency under mild reaction conditions and complete 89Zr incorporation within 1 h, yielding the 89Zr-labeled analogs as homogenous products. In contrast, 3,4,3-(LI-1,2-HOPO)-c(RGDfK) required considerably prolonged reaction times of 5 h for complete radiometal incorporation and yielded several different 89Zr-labeled species. The labeling of the DOTA-GA-modified peptide was not successful at all. Compared to [89Zr]Zr-DFO-, [89Zr]Zr-CTH-36- and [89Zr]Zr-DFO*-c(RGDfK), the corresponding [89Zr]Zr-3,4,3-(LI-1,2-HOPO) peptide showed a strongly increased lipophilicity. Finally, the relative stability of the 89Zr complexes against the EDTA challenge was investigated. The [89Zr]Zr-DFO complex showed-as expected-a low kinetic inertness. Unexpectedly, also, the [89Zr]Zr-CTH-36 complex demonstrated a high susceptibility against the challenge, limiting the usefulness of CTH-36 for stable 89Zr complexation. Only the [89Zr]Zr-DFO* and the [89Zr]Zr-3,4,3-(LI-1,2-HOPO) complexes demonstrated a high inertness, qualifying them for further comparative in vivo investigation to determine the most appropriate alternative to DFO for clinical application.

5.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199635

RESUMO

Recently, anionic charges were found to negatively influence the in vitro gastrin-releasing peptide receptor (GRPR) binding parameters of dually radioisotope and fluorescent dye labeled GRPR-specific peptide dimers. From this, the question arose if this adverse impact on in vitro GRP receptor affinities could be mitigated by a higher valency of peptide multimerization. For this purpose, we designed two different hybrid multimodal imaging units (MIUs), comprising either one or two click chemistry-compatible functional groups and reacted them with PESIN (PEG3-BBN7-14, PEG = polyethylene glycol) dimers to obtain a dually labeled peptide homodimer or homotetramer. Using this approach, other dually labeled peptide monomers, dimers, and tetramers can also be obtained, and the chelator and fluorescent dye can be adapted to specific requirements. The MIUs, as well as their peptidic conjugates, were evaluated in terms of their photophysical properties, radiolabeling efficiency with 68Ga and 64Cu, hydrophilicity, and achievable GRP receptor affinities. Here, the hydrophilicity and the GRP receptor binding affinities were found to be especially strongly influenced by the number of negative charges and peptide copies, showing logD (1-octanol-water-distribution coefficient) and IC50 (half maximal inhibitory concentration) values of -2.2 ± 0.1 and 59.1 ± 1.5 nM for the homodimer, and -1.9 ± 0.1 and 99.8 ± 3.2 nM for the homotetramer, respectively. From the obtained data, it can be concluded that the adverse influence of negatively charged building blocks on the in vitro GRP receptor binding properties of dually labeled PESIN multimers can, at least partly, be compensated for by the number of introduced peptide binding motives and the used molecular design.

6.
Pharmaceuticals (Basel) ; 13(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751666

RESUMO

Over the past few years, an approach emerged that combines different receptor-specific peptide radioligands able to bind different target structures on tumor cells concomitantly or separately. The reason for the growing interest in this special field of radiopharmaceutical development is rooted in the fact that bispecific peptide heterodimers can exhibit a strongly increased target cell avidity and specificity compared to their corresponding monospecific counterparts by being able to bind to two different target structures that are overexpressed on the cell surface of several malignancies. This increase of avidity is most pronounced in the case of concomitant binding of both peptides to their respective targets but is also observed in cases of heterogeneously expressed receptors within a tumor entity. Furthermore, the application of a radiolabeled heterobivalent agent can solve the ubiquitous problem of limited tumor visualization sensitivity caused by differential receptor expression on different tumor lesions. In this article, the concept of heterobivalent targeting and the general advantages of using radiolabeled bispecific peptidic ligands for tumor imaging or therapy as well as the influence of molecular design and the receptors on the tumor cell surface are explained, and an overview is given of the radiolabeled heterobivalent peptides described thus far.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA