Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Pathog ; 20(6): e1011777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913740

RESUMO

COVID-associated coagulopathy seemly plays a key role in post-acute sequelae of SARS- CoV-2 infection. However, the underlying pathophysiological mechanisms are poorly understood, largely due to the lack of suitable animal models that recapitulate key clinical and pathological symptoms. Here, we fully characterized AC70 line of human ACE2 transgenic (AC70 hACE2 Tg) mice for SARS-CoV-2 infection. We noted that this model is highly permissive to SARS-CoV-2 with values of 50% lethal dose and infectious dose as ~ 3 and ~ 0.5 TCID50 of SARS-CoV-2, respectively. Mice infected with 105 TCID50 of SARS-CoV-2 rapidly succumbed to infection with 100% mortality within 5 days. Lung and brain were the prime tissues harboring high viral titers, accompanied by histopathology. However, viral RNA and inflammatory mediators could be detectable in other organs, suggesting the nature of a systemic infection. Lethal challenge of AC70 hACE2 Tg mice caused acute onset of leukopenia, lymphopenia, along with an increased neutrophil-to-lymphocyte ratio (NLR). Importantly, infected animals recapitulated key features of COVID-19-associated coagulopathy. SARS-CoV-2 could induce the release of circulating neutrophil extracellular traps (NETs), along with activated platelet/endothelium marker. Immunohistochemical staining with anti-platelet factor-4 (PF4) antibody revealed profound platelet aggregates especially within blocked veins of the lungs. We showed that acute SARS-CoV-2 infection triggered a hypercoagulable state coexisting with ill-regulated fibrinolysis. Finally, we highlighted the potential role of Annexin A2 (ANXA2) in fibrinolytic failure. ANXA2 is a calcium-dependent phospholipid-binding protein that forms a heterotertrameric complexes localized at the extracellular membranes with two S100A10 small molecules acting as a co-receptor for tissue-plasminogen activator (t-PA), tightly involved in cell surface fibrinolysis. Thus, our results revealing elevated IgG type anti-ANXA2 antibody production, downregulated de novo ANXA2/S100A10 synthesis, and reduced ANXA2/S100A10 association in infected mice, this protein might serve as druggable targets for development of antithrombotic and/or anti-fibrinolytic agents to attenuate pathogenesis of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , Camundongos Transgênicos , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/complicações , COVID-19/virologia , COVID-19/metabolismo , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Humanos , Transtornos da Coagulação Sanguínea/virologia , Transtornos da Coagulação Sanguínea/patologia , Pneumonia Viral/virologia , Pneumonia Viral/patologia , Pneumonia Viral/metabolismo , Betacoronavirus , Pulmão/virologia , Pulmão/patologia , Pulmão/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/complicações , Pandemias , Armadilhas Extracelulares/metabolismo
3.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581669

RESUMO

High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for next-generation sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called 'Tiled-ClickSeq', which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5'UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.


Assuntos
Sequência de Bases , Coronavirus/genética , Genoma Viral , RNA , SARS-CoV-2/genética , COVID-19/virologia , DNA Complementar , Biblioteca Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nanoporos , Reação em Cadeia da Polimerase , RNA Mensageiro , RNA Viral/genética , Recombinação Genética , Sequenciamento Completo do Genoma
4.
bioRxiv ; 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33758846

RESUMO

High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for Next-Generation Sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called 'Tiled-ClickSeq', which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5'UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.

5.
PLoS Negl Trop Dis ; 14(7): e0007960, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687500

RESUMO

Intracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.


Assuntos
Anexina A2/metabolismo , Hemorragia Cerebral/metabolismo , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Infecções por Rickettsia/metabolismo , Rickettsia/fisiologia , Animais , Anexina A2/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Hemorragia Cerebral/genética , Hemorragia Cerebral/microbiologia , Hemorragia Cerebral/virologia , Endossomos/genética , Endossomos/metabolismo , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Humanos , Camundongos , Camundongos Knockout , Rickettsia/genética , Infecções por Rickettsia/genética , Infecções por Rickettsia/microbiologia
6.
Lab Invest ; 100(8): 1030-1041, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32238906

RESUMO

Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Doença pelo Vírus Ebola/metabolismo , Fígado/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Animais , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Fígado/microbiologia , Fígado/virologia , Camundongos Knockout , Ligação Proteica , Rickettsia/fisiologia , Rickettsiose do Grupo da Febre Maculosa/metabolismo , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Talina/química , Vinculina/química
7.
Pathol Res Pract ; 215(5): 1049-1053, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30846415

RESUMO

Commercial deficiency of practical system to label multiple targets in experimental mouse tissues significantly hinders the feasibility to study the potential association between/among multiple targets using tissue-based immunofluorescence (IF) staining. We have developed a new protocol to do dual - labeling immunofluorescences on mouse tissues by combining direct and indirect immunofluorescence, making it possible to use commercial antibodies from the same specious (rabbit) to detect multiple targets in formalin-fixed paraffin-embedded (FFPE) archival mouse tissues simultaneously. This method applies indirect immunofluorescence to assess the first antigen in mouse tissues by using a rabbit anti-mouse polyclonal antibody and goat anti-rabbit antibody. After that, normal rabbit serum was employed to blocking the free binding sites of the previous antibodies. Direct immunofluorescence was used to assess the second antigen by a commercial kit-labeled rabbit anti-human (mouse) antibody at different emission wavelength. At last, cell nuclei were co-stained by DAPI. The outcomes demonstrated that this protocol obtain promising signals of both antigens and the nuclei. Moreover, this method also works on infection disease models in which samples are often over fixed due to biosafety rules.


Assuntos
Anticorpos , Imunofluorescência/métodos , Animais , Camundongos , Coelhos , Kit de Reagentes para Diagnóstico
8.
Viruses ; 10(10)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332733

RESUMO

Members of the family Filoviridae, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates. Given their high lethality, a comprehensive understanding of filoviral pathogenesis is urgently needed. In the present studies, we revealed that the exchange protein directly activated by cAMP 1 (EPAC1) gene deletion protects vasculature in ex vivo explants from EBOV infection. Importantly, pharmacological inhibition of EPAC1 using EPAC-specific inhibitors (ESIs) mimicked the EPAC1 knockout phenotype in the ex vivo model. ESI treatment dramatically decreased EBOV infectivity in both ex vivo vasculature and in vitro vascular endothelial cells (ECs). Furthermore, postexposure protection of ECs against EBOV infection was conferred using ESIs. Protective efficacy of ESIs in ECs was observed also in MARV infection. Additional studies using a vesicular stomatitis virus pseudotype that expresses EBOV glycoprotein (EGP-VSV) confirmed that ESIs reduced infection in ECs. Ultrastructural studies suggested that ESIs blocked EGP-VSV internalization via inhibition of macropinocytosis. The inactivation of EPAC1 affects the early stage of viral entry after viral binding to the cell surface, but before early endosome formation, in a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-dependent manner. Our study delineated a new critical role of EPAC1 during EBOV uptake into ECs.


Assuntos
Ebolavirus/fisiologia , Células Endoteliais/virologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doença pelo Vírus Ebola/virologia , Animais , Ebolavirus/genética , Células Endoteliais/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Doença pelo Vírus Ebola/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Internalização do Vírus
9.
Mol Immunol ; 74: 106-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27174188

RESUMO

We recently described a dominant role for conformational epitopes on the group 1 allergen of the mountain cedar (Juniperus ashei, Cupressaceae), Jun a 1, in pollen hypersensitivity in South Central U.S.A. Since these epitopes are surface exposed and are likely to be flexible, they may be susceptible to molecular or physical perturbations. This may make Jun a 1 a potential target for new forms of therapy for cedar pollinosis. Here, we describe a mouse monoclonal antibody, termed E58, which binds to the group 1 allergens of the cedar pollens from three highly populated regions of the world (central U.S.A., France and Japan). Upon binding to these allergens, E58 strongly reduces the binding of patient's IgE antibodies to these dominant allergens. This characteristic of E58, and potentially other similar antibodies, suggests an opportunity to develop preventative or therapeutic agents that may inhibit cedar pollen sensitization or prevent their allergic reactions.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Plantas/imunologia , Epitopos de Linfócito B/imunologia , Hipersensibilidade/imunologia , Proteínas de Plantas/imunologia , Alérgenos , Animais , Especificidade de Anticorpos , Cedrus/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina E/imunologia , Camundongos , Pólen/imunologia , Ressonância de Plasmônio de Superfície
10.
Infect Immun ; 84(4): 883-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26755162

RESUMO

Spotted fever group rickettsiae cause potentially life-threatening infections throughout the world. Several members of the Toll-like receptor (TLR) family are involved in host response to rickettsiae, and yet the mechanisms by which these TLRs mediate host immunity remain incompletely understood. In the present study, we found that host susceptibility of MyD88(-/-)mice to infection with Rickettsia conorii or Rickettsia australis was significantly greater than in wild-type (WT) mice, in association with severely impaired bacterial clearance in vivo R. australis-infected MyD88(-/-)mice showed significantly lower expression levels of gamma interferon (IFN-γ), interleukin-6 (IL-6), and IL-1ß, accompanied by significantly fewer inflammatory infiltrates of macrophages and neutrophils in infected tissues, than WT mice. The serum levels of IFN-γ, IL-12, IL-6, and granulocyte colony-stimulating factor were significantly reduced, while monocyte chemoattractant protein 1, macrophage inflammatory protein 1α, and RANTES were significantly increased in infected MyD88(-/-)mice compared to WT mice. Strikingly, R. australis infection was incapable of promoting increased expression of MHC-II(high)and production of IL-12p40 in MyD88(-/-)bone marrow-derived dendritic cells (BMDCs) compared to WT BMDCs, although costimulatory molecules were upregulated in both types of BMDCs. Furthermore, the secretion levels of IL-1ß by Rickettsia-infected BMDCs and in the sera of infected mice were significantly reduced in MyD88(-/-)mice compared to WT controls, suggesting that in vitro and in vivo production of IL-1ß is MyD88 dependent. Taken together, our results suggest that MyD88 signaling mediates instructive signals in DCs and secretion of IL-1ß and type 1 immune cytokines, which may account for the protective inflammatory response during rickettsial infection.


Assuntos
Células Dendríticas/fisiologia , Regulação Bacteriana da Expressão Gênica/imunologia , Inflamação/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Rickettsia/metabolismo , Transdução de Sinais/fisiologia , Animais , Citocinas/genética , Citocinas/metabolismo , Genes MHC da Classe II/fisiologia , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Infecções por Rickettsia/imunologia , Baço/metabolismo
11.
Nanomedicine ; 11(2): 447-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25194998

RESUMO

Burkholderia mallei are Gram-negative bacteria, responsible for the disease glanders. B. mallei has recently been classified as a Tier 1 agent owing to the fact that this bacterial species can be weaponised for aerosol release, has a high mortality rate and demonstrates multi-drug resistance. Furthermore, there is no licensed vaccine available against this pathogen. Lipopolysaccharide (LPS) has previously been identified as playing an important role in generating host protection against Burkholderia infection. In this study, we present gold nanoparticles (AuNPs) functionalised with a glycoconjugate vaccine against glanders. AuNPs were covalently coupled with one of three different protein carriers (TetHc, Hcp1 and FliC) followed by conjugation to LPS purified from a non-virulent clonal relative, B. thailandensis. Glycoconjugated LPS generated significantly higher antibody titres compared with LPS alone. Further, they improved protection against a lethal inhalation challenge of B. mallei in the murine model of infection. FROM THE CLINICAL EDITOR: Burkholderia mallei is associated with multi-drug resistance, high mortality and potentials for weaponization through aerosol inhalation. The authors of this study present gold nanoparticles (AuNPs) functionalized with a glycoconjugate vaccine against this Gram negative bacterium demonstrating promising results in a murine model even with the aerosolized form of B. Mallei.


Assuntos
Vacinas Bacterianas/administração & dosagem , Burkholderia mallei/efeitos dos fármacos , Mormo/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Administração por Inalação , Animais , Vacinas Bacterianas/química , Burkholderia mallei/patogenicidade , Modelos Animais de Doenças , Mormo/imunologia , Mormo/microbiologia , Glicoconjugados/administração & dosagem , Glicoconjugados/química , Ouro/química , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Nanopartículas Metálicas/química , Camundongos
13.
Clin Vaccine Immunol ; 21(5): 747-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24671550

RESUMO

The environmental Gram-negative encapsulated bacillus Burkholderia pseudomallei is the causative agent of melioidosis, a disease associated with high morbidity and mortality rates in areas of Southeast Asia and northern Australia in which the disease is endemic. B. pseudomallei is also classified as a tier I select agent due to the high level of lethality of the bacterium and its innate resistance to antibiotics, as well as the lack of an effective vaccine. Gram-negative bacteria, including B. pseudomallei, secrete outer membrane vesicles (OMVs) which are enriched with multiple protein, lipid, and polysaccharide antigens. Previously, we demonstrated that immunization with multivalent B. pseudomallei-derived OMVs protects highly susceptible BALB/c mice against an otherwise lethal aerosol challenge. In this work, we evaluated the protective efficacy of OMV immunization against intraperitoneal challenge with a heterologous strain because systemic infection with phenotypically diverse environmental B. pseudomallei strains poses another hazard and a challenge to vaccine development. We demonstrated that B. pseudomallei OMVs derived from strain 1026b afforded significant protection against septicemic infection with B. pseudomallei strain K96243. OMV immunization induced robust OMV-, lipopolysaccharide-, and capsular polysaccharide-specific serum IgG (IgG1, IgG2a, and IgG3) and IgM antibody responses. OMV-immune serum promoted bacterial killing in vitro, and passive transfer of B. pseudomallei OMV immune sera protected naive mice against a subsequent challenge. These results indicate that OMV immunization provides antibody-mediated protection against acute, rapidly lethal sepsis in mice. B. pseudomallei-derived OMVs may represent an efficacious multivalent vaccine strategy against melioidosis.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Vesículas Secretórias/imunologia , Sepse/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Atividade Bactericida do Sangue , Proteção Cruzada , Feminino , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Camundongos Endogâmicos BALB C , Análise de Sobrevida
14.
PLoS One ; 8(5): e63331, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691024

RESUMO

Mycobacterium tuberculosis (M.tb) is the second leading infectious cause of death worldwide and the primary cause of death in people living with HIV/AIDS. There are several excellent animal models employed to study tuberculosis (TB), but many have limitations for reproducing human pathology and none are amenable to the direct study of HIV/M.tb co-infection. The humanized mouse has been increasingly employed to explore HIV infection and other pathogens where animal models are limiting. Our goal was to develop a small animal model of M.tb infection using the bone marrow, liver, thymus (BLT) humanized mouse. NOD-SCID/γc(null) mice were engrafted with human fetal liver and thymus tissue, and supplemented with CD34(+) fetal liver cells. Excellent reconstitution, as measured by expression of the human CD45 pan leukocyte marker by peripheral blood populations, was observed at 12 weeks after engraftment. Human T cells (CD3, CD4, CD8), as well as natural killer cells and monocyte/macrophages were all observed within the human leukocyte (CD45(+)) population. Importantly, human T cells were functionally competent as determined by proliferative capacity and effector molecule (e.g. IFN-γ, granulysin, perforin) expression in response to positive stimuli. Animals infected intranasally with M.tb had progressive bacterial infection in the lung and dissemination to spleen and liver from 2-8 weeks post infection. Sites of infection in the lung were characterized by the formation of organized granulomatous lesions, caseous necrosis, bronchial obstruction, and crystallization of cholesterol deposits. Human T cells were distributed throughout the lung, liver, and spleen at sites of inflammation and bacterial growth and were organized to the periphery of granulomas. These preliminary results demonstrate the potential to use the humanized mouse as a model of experimental TB.


Assuntos
Modelos Animais de Doenças , Tuberculose/fisiopatologia , Animais , Transplante de Medula Óssea/métodos , Humanos , Fígado/citologia , Fígado/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Linfócitos T/imunologia , Timo/citologia
15.
PLoS One ; 7(4): e35386, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22530013

RESUMO

Burkholderia pseudomallei is a Gram-negative bacillus that is the causative agent of melioidosis. The bacterium is inherently resistant to many antibiotics and mortality rates remain high in endemic areas. The lipopolysaccharide (LPS) and capsular polysaccharide (CPS) are two surface-associated antigens that contribute to pathogenesis. We previously developed two monoclonal antibodies (mAbs) specific to the CPS and LPS; the CPS mAb was shown to identify antigen in serum and urine from melioidosis patients. The goal of this study was to determine if passive immunization with CPS and LPS mAbs alone and in combination would protect mice from a lethal challenge with B. pseudomallei. Intranasal (i.n.) challenge experiments were performed with B. pseudomallei strains 1026b and K96423. Both mAbs provided significant protection when administered alone. A combination of mAbs was protective when low doses were administered. In addition, combination therapy provided a significant reduction in spleen colony forming units (cfu) compared to results when either the CPS or LPS mAbs were administered alone.


Assuntos
Anticorpos Monoclonais/imunologia , Burkholderia pseudomallei/imunologia , Imunização Passiva , Melioidose/prevenção & controle , Polissacarídeos/imunologia , Abscesso/patologia , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Epitopos , Feminino , Melioidose/mortalidade , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/microbiologia , Baço/patologia
16.
PLoS One ; 7(3): e34176, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22448290

RESUMO

Prophylactic administration of CpG oligodeoxynucleotides (CpG ODNs) is known to confer protection against lethal sepsis caused by Burkholderia pseudomallei in the mouse model. The mechanisms whereby CpG regulates the innate immune response to provide protection against B. pseudomallei, however, are poorly characterized. In the present study, we demonstrate that intranasal treatment of mice with Class C CpG, results in recruitment of inflammatory monocytes and neutrophils to the lung at 48 h post-treatment. Mice infected with B. pseudomallei 48 h post-CpG treatment had reduced organ bacterial load and significantly altered cytokine and chemokine profiles concomitant with protection as compared to control animals. CpG administration reduced the robust production of chemokines and pro-inflammatory cytokines in blood, lung and spleen, observed following infection of non-treated animals. Death of control animals coincided with the time of peak cytokine production (day 1-3), while a moderate; sustained cytokine production in CpG-treated animals was associated with survival. In general, CpG treatment resulted in diminished expression of cytokines and chemokines post-infection, though IL-12p40 was released in larger quantities in CpG treated animals. In contrast to CpG-treated animals, the lungs of infected control animals were infiltrated with leukocytes, especially neutrophils, and large numbers of necrotic lesions were observed in lung sections. Therapeutic treatment of B. pseudomallei-infected animals with CpG at 24 h post-infection did not impact survival compared to control animals. In summary, protection of CpG-treated animals was associated with recruitment of inflammatory monocytes and neutrophils into the lungs prior to infection. These responses correspond with early control of bacterial growth, a dampened inflammatory cytokine/chemokine response, reduced lung pathology, and greatly increased survival. In contrast, a delay in recruitment of inflammatory cell populations, despite a robust production of pro-inflammatory cytokines, was associated with poorly controlled bacterial growth, severe lung pathology, and death of control animals.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Burkholderia pseudomallei/patogenicidade , Imunidade Inata , Pulmão/imunologia , Melioidose/imunologia , Melioidose/prevenção & controle , Oligodesoxirribonucleotídeos/administração & dosagem , Animais , Burkholderia pseudomallei/isolamento & purificação , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Pulmão/microbiologia , Pulmão/patologia , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Baço/imunologia , Baço/microbiologia , Baço/patologia , Taxa de Sobrevida
17.
Front Microbiol ; 2: 227, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125550

RESUMO

Burkholderia are highly evolved Gram-negative bacteria that primarily infect solipeds but are transmitted to humans by ingestion and cutaneous or aerosol exposures. Heightened concern over human infections of Burkholderia mallei and the very closely related species B. pseudomallei is due to the pathogens' proven effectiveness as bioweapons, and to the increased potential for natural opportunistic infections in the growing diabetic and immuno-compromised populations. These Burkholderia species are nearly impervious to antibiotic treatments and no vaccine exists. In this study, the genome of the highly virulent B. mallei ATCC23344 strain was examined by expression library immunization for gene-encoded protective antigens. This protocol for genomic-scale functional screening was customized to accommodate the unusually large complexity of Burkholderia, and yielded 12 new putative vaccine candidates. Five of the candidates were individually tested as protein immunogens and three were found to confer significant partial protection against a lethal pulmonary infection in a murine model of disease. Determinations of peripheral blood cytokine and chemokine profiles following individual protein immunizations show that interleukin-2 (IL-2) and IL-4 are elicited by the three confirmed candidates, but unexpectedly interferon-γ and tumor necrosis factor-α are not. We suggest that these pathogen components, discovered using genetic immunization and confirmed in a conventional protein format, will be useful toward the development of a safe and effective glanders vaccine.

18.
Front Microbiol ; 2: 174, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904535

RESUMO

Bioluminescent imaging (BLI) technology is a powerful tool for monitoring infectious disease progression and treatment approaches. BLI is particularly useful for tracking fastidious intracellular pathogens that might be difficult to recover from certain organs. Burkholderia mallei, the causative agent of glanders, is a facultative intracellular pathogen and has been classified by the CDC as a Category B select agent due to its highly infectious nature and potential use as a biological weapon. Very little is known regarding pathogenesis or treatment of glanders. We investigated the use of bioluminescent reporter constructs to monitor the dynamics of infection as well as the efficacy of therapeutics for B. mallei in real-time. A stable luminescent reporter B. mallei strain was created using the pUTmini-Tn5::luxKm2 plasmid and used to monitor glanders in the BALB/c murine model. Mice were infected via the intranasal route with 5 × 10(3) bacteria and monitored by BLI at 24, 48, and 72 h. We verified that our reporter construct maintained similar virulence and growth kinetics compared to wild-type B. mallei and confirmed that it maintains luminescent stability in the presence or absence of antibiotic selection. The luminescent signal was initially seen in the lungs, and progressed to the liver and spleen over the course of infection. We demonstrated that antibiotic treatment 24 h post-infection resulted in reduction of bioluminescence that can be attributed to decreased bacterial burden in target organs. These findings suggest that BLI can be used to monitor disease progression and efficacy of therapeutics during glanders infections. Finally, we report an alternative method to mini-Tn5::luxKm2 transposon using mini-Tn7-lux elements that insert site-specifically at known genomic attachment sites and that can also be used to tag bacteria.

19.
Faraday Discuss ; 149: 23-36; discussion 63-77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21413172

RESUMO

Rapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei). We are developing assays that can be used in clinical laboratories or security applications for the direct detection of surface-localized and secreted macromolecules produced by these organisms. We present our current medium-throughout approach for target selection and production of Burkholderia macromolecules and describe the generation of a Fab molecule targeted to the B. mallei BimA protein. We also present development of prototype assays for detecting Burkholderia species using anti-lipopolysaccharide antibodies.


Assuntos
Burkholderia mallei/isolamento & purificação , Burkholderia pseudomallei/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Mormo/microbiologia , Melioidose/microbiologia , Animais , Burkholderia mallei/metabolismo , Burkholderia pseudomallei/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Mormo/diagnóstico , Humanos , Melioidose/diagnóstico , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-24379895

RESUMO

Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC transporter protein) generated significant protection against lethal inhaled B. mallei ATCC23344 and B. pseudomallei 1026b challenge. Immunization with BopA elicited the greatest protective activity, resulting in 100% and 60% survival against B. mallei and B. pseudomallei challenge, respectively. Moreover, sera from recovered mice demonstrated reactivity with the recombinant proteins. Dendritic cells stimulated with each of the different recombinant proteins showed distinct cytokine patterns. In addition, T cells from immunized mice produced IFN-γ following in vitro re-stimulation. These results indicated therefore that it was possible to elicit cross-protective immunity against both B. mallei and B. pseudomallei by vaccinating animals with one or more novel recombinant proteins identified in B. mallei.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA