Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant J ; 117(5): 1592-1603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050352

RESUMO

The Plant Expression Omnibus (PEO) is a web application that provides biologists with access to gene expression insights across over 100 plant species, ~60 000 manually annotated RNA-seq samples, and more than 4 million genes. The tool allows users to explore the expression patterns of genes across different organs, identify organ-specific genes, and discover top co-expressed genes for any gene of interest. PEO also provides functional annotations for each gene, allowing for the identification of genetic modules and pathways. PEO is designed to facilitate comparative kingdom-wide gene expression analysis and provide a valuable resource for plant biology research. We provide two case studies to demonstrate the utility of PEO in identifying candidate genes in pollen coat biosynthesis in Arabidopsis and investigating the biosynthetic pathway components of capsaicin in Capsicum annuum. The database is freely available at https://expression.plant.tools/.


Assuntos
Arabidopsis , Perfilação da Expressão Gênica , Transcriptoma/genética , Plantas/genética , Plantas/metabolismo , Bases de Dados Factuais , RNA-Seq , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética
2.
Nucleic Acids Res ; 52(D1): D513-D521, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962356

RESUMO

In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org.


Assuntos
Bases de Dados Genéticas , Ecossistema , Genoma , Proteoma , Genoma/genética , Filogenia , Sintenia , Internet , Ordem dos Genes/genética
3.
Cell Rep ; 42(11): 113419, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952150

RESUMO

Plasmodium parasites contribute to one of the highest global infectious disease burdens. To achieve this success, the parasite has evolved a range of specialized subcellular compartments to extensively remodel the host cell for its survival. The information to fully understand these compartments is likely hidden in the so far poorly characterized Plasmodium species spatial proteome. To address this question, we determined the steady-state subcellular location of more than 12,000 parasite proteins across five different species by extensive subcellular fractionation of erythrocytes infected by Plasmodium falciparum, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. This comparison of the pan-species spatial proteomes and their expression patterns indicates increasing species-specific proteins associated with the more external compartments, supporting host adaptations and post-transcriptional regulation. The spatial proteome offers comprehensive insight into the different human, simian, and rodent Plasmodium species, establishing a powerful resource for understanding species-specific host adaptation processes in the parasite.


Assuntos
Malária , Proteômica , Humanos , Malária/parasitologia , Proteoma/metabolismo , Plasmodium berghei/metabolismo , Eritrócitos/parasitologia
4.
BMC Biol ; 21(1): 85, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069619

RESUMO

BACKGROUND: The last taxonomic account of Olea recognises six subspecies within Olea europaea L., including the Mediterranean olive tree (subsp. europaea) and five other subspecies (laperrinei, guanchica, maroccana, cerasiformis, and cuspidata) distributed across the Old World, including Macaronesian islands. The evolutionary history of this monophyletic group (O. europaea complex) has revealed a reticulated scenario involving hybridization and polyploidization events, leading to the presence of a polyploid series associated with the subspecies. However, how the polyploids originated, and how the different subspecies contributed to the domestication of the cultivated olive are questions still debated. Tracing the recent evolution and genetic diversification of the species is key for the management and preservation of its genetic resources. To study the recent history of the O. europaea complex, we compared newly sequenced and available genomes for 27 individuals representing the six subspecies. RESULTS: Our results show discordance between current subspecies distributions and phylogenomic patterns, which support intricate biogeographic patterns. The subspecies guanchica, restricted to the Canary Islands, is closely related to subsp. europaea, and shows a high genetic diversity. The subsp. laperrinei, restricted now to high mountains of the Sahara desert, and the Canarian subsp. guanchica contributed to the formation of the allotetraploid subsp. cerasiformis (Madeira islands) and the allohexaploid subsp. maroccana (western Sahara region). Our phylogenomic data support the recognition of one more taxon (subsp. ferruginea) for the Asian populations, which is clearly segregated from the African subsp. cuspidata. CONCLUSIONS: In sum, the O. europaea complex underwent several processes of hybridization, polyploidy, and geographical isolation resulting in seven independent lineages with certain morphological traits recognised into subspecies.


Assuntos
Olea , Humanos , Olea/genética , Filogenia , Espanha , Variação Genética
5.
Comput Struct Biotechnol J ; 21: 1639-1650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874159

RESUMO

The immense structural diversity of products and intermediates of plant specialized metabolism (specialized metabolites) makes them rich sources of therapeutic medicine, nutrients, and other useful materials. With the rapid accumulation of reactome data that can be accessible on biological and chemical databases, along with recent advances in machine learning, this review sets out to outline how supervised machine learning can be used to design new compounds and pathways by exploiting the wealth of said data. We will first examine the various sources from which reactome data can be obtained, followed by explaining the different machine learning encoding methods for reactome data. We then discuss current supervised machine learning developments that can be employed in various aspects to help redesign plant specialized metabolism.

6.
J Integr Plant Biol ; 65(6): 1442-1466, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807520

RESUMO

Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.


Assuntos
Oldenlandia , Oldenlandia/química , Transcriptoma , Metabolômica , Genômica , Ácido Ursólico
7.
Trends Plant Sci ; 28(2): 235-249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344371

RESUMO

Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.


Assuntos
Perfilação da Expressão Gênica , Software , Análise de Sequência de RNA , Expressão Gênica , Transcriptoma/genética
8.
Plants (Basel) ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297753

RESUMO

Peru is an important center of diversity for maize; its different cultivars have been adapted to distinct altitudes and water availability and possess an array of kernel colors (red, blue, and purple), which are highly appreciated by local populations. Specifically, Peruvian purple maize is a collection of native landraces selected and maintained by indigenous cultures due to its intense purple color in the seed, bract, and cob. This color is produced by anthocyanin pigments, which have gained interest due to their potential use in the food, agriculture, and pharmaceutical industry. It is generally accepted that the Peruvian purple maize originated from a single ancestral landrace 'Kculli', but it is not well understood. To study the origin of the Peruvian purple maize, we assembled the plastid genomes of the new cultivar 'INIA 601' with a high concentration of anthocyanins, comparing them with 27 cultivars/landraces of South America, 9 Z. mays subsp. parviglumis, and 5 partial genomes of Z. mays subsp. mexicana. Using these genomes, plus four other maize genomes and two outgroups from the NCBI database, we reconstructed the phylogenetic relationship of Z. mays. Our results suggest a polyphyletic origin of purple maize in South America and agree with a complex scenario of domestication with recurrent gene flow from wild relatives. Additionally, we identify 18 plastid positions that can be used as high-confidence genetic markers for further studies. Altogether, these plastid genomes constitute a valuable resource to study the evolution and domestication of Z. mays in South America.

9.
Nat Plants ; 7(8): 1143-1159, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253868

RESUMO

The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function.


Assuntos
Embriófitas/crescimento & desenvolvimento , Embriófitas/genética , Perfilação da Expressão Gênica , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/genética , Organogênese Vegetal/genética , Reprodução/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Organogênese Vegetal/fisiologia , Fenótipo , Proteínas de Plantas/metabolismo , Reprodução/fisiologia , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
10.
Int J Infect Dis ; 108: 171-175, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34004330

RESUMO

OBJECTIVES: Our study aimed to determine the incidence of late onset sepsis and the most frequent microorganisms causing it in the neonatal unit at Hospital Cayetano Heredia in Lima, Peru. METHODS: Descriptive and retrospective study. We reviewed all positive blood cultures and cultures of cerebrospinal fluid drawn from inborn patients beyond 72 h of life, admitted to the neonatal unit from January 2015 to December 2019. RESULTS: The incidence of late onset sepsis was 7.4% of admitted patients and 10.04 per 1000 live births. During our study period, 234 episodes of late onset sepsis occurred in 204 patients. The incidence was higher in very low birth weight infants, reaching 36.2% and even higher in extremely low birth weight infants (40.7%). Coagulase-negative Staphylococcus and then Klebsiella spp. were the most frequent causative microorganisms. The most frequent cause of late onset sepsis in very low birth weight infants was gram-negative bacteria (Klebsiella spp., was the most frequent causative microorganism). CONCLUSIONS: Late onset neonatal sepsis is prevalent in our neonatal unit. It is important to know which are the most prevalent causative microorganisms to be able to choose adequate antibiotic coverage and to design strategies to prevent infection.


Assuntos
Sepse Neonatal , Sepse , Humanos , Incidência , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Sepse Neonatal/epidemiologia , Peru/epidemiologia , Estudos Retrospectivos , Sepse/epidemiologia
11.
Sci Rep ; 11(1): 5477, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750818

RESUMO

Yeast-two-hybrid (Y2H) is widely used as a strategy to detect protein-protein interactions (PPIs). Recent advancements have made it possible to generate and analyse genome-wide PPI networks en masse by coupling Y2H with next-generation sequencing technology. However, one of the major challenges of yeast two-hybrid assay is the large amount of false-positive hits caused by auto-activators (AAs), which are proteins that activate the reporter genes without the presence of an interacting protein partner. Here, we have developed a negative selection to minimize these auto-activators by integrating the pGAL2-URA3 fragment into the yeast genome. Upon activation of the pGAL2 promoter by an AA, yeast cells expressing URA3 cannot grow in media supplemented with 5-Fluoroorotic acid (5-FOA). Hence, we selectively inhibit the growth of yeast cells expressing auto-activators and thus minimizing the amount of false-positive hits. Here, we have demonstrated that auto-activators can be successfully removed from a Marchantia polymorpha cDNA library using pGAL2-URA3 and 5-FOA treatment, in liquid and solid-grown cultures. Furthermore, since URA3 can also serve as a marker for uracil autotrophy, we propose that our approach is a valuable addition to any large-scale Y2H screen.


Assuntos
Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Biblioteca Gênica , Genes Reporter , Genoma Fúngico , Marchantia/genética , Mapeamento de Interação de Proteínas , Transformação Genética
12.
Comput Struct Biotechnol J ; 18: 3788-3795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304470

RESUMO

The fungi kingdom is composed of eukaryotic heterotrophs, which are responsible for balancing the ecosystem and play a major role as decomposers. They also produce a vast diversity of secondary metabolites, which have antibiotic or pharmacological properties. However, our lack of knowledge of gene function in fungi precludes us from tailoring them to our needs and tapping into their metabolic diversity. To help remedy this, we gathered genomic and gene expression data of 19 most widely-researched fungi to build an online tool, fungi.guru, which contains tools for cross-species identification of conserved pathways, functional gene modules, and gene families. We exemplify how our tool can elucidate the molecular function, biological process and cellular component of genes involved in various biological processes, by identifying a secondary metabolite pathway producing gliotoxin in Aspergillus fumigatus, the catabolic pathway of cellulose in Coprinopsis cinerea and the conserved DNA replication pathway in Fusarium graminearum and Pyricularia oryzae. The tool is available at www.fungi.guru.

13.
BMC Biol ; 18(1): 148, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33100219

RESUMO

BACKGROUND: Olive tree (Olea europaea L. subsp. europaea, Oleaceae) has been the most emblematic perennial crop for Mediterranean countries since its domestication around 6000 years ago in the Levant. Two taxonomic varieties are currently recognized: cultivated (var. europaea) and wild (var. sylvestris) trees. However, it remains unclear whether olive cultivars derive from a single initial domestication event followed by secondary diversification, or whether cultivated lineages are the result of more than a single, independent primary domestication event. To shed light into the recent evolution and domestication of the olive tree, here we analyze a group of newly sequenced and available genomes using a phylogenomics and population genomics framework. RESULTS: We improved the assembly and annotation of the reference genome, newly sequenced the genomes of twelve individuals: ten var. europaea, one var. sylvestris, and one outgroup taxon (subsp. cuspidata)-and assembled a dataset comprising whole genome data from 46 var. europaea and 10 var. sylvestris. Phylogenomic and population structure analyses support a continuous process of olive tree domestication, involving a major domestication event, followed by recurrent independent genetic admixture events with wild populations across the Mediterranean Basin. Cultivated olives exhibit only slightly lower levels of genetic diversity than wild forms, which can be partially explained by the occurrence of a mild population bottleneck 3000-14,000 years ago during the primary domestication period, followed by recurrent introgression from wild populations. Genes associated with stress response and developmental processes were positively selected in cultivars, but we did not find evidence that genes involved in fruit size or oil content were under positive selection. This suggests that complex selective processes other than directional selection of a few genes are in place. CONCLUSIONS: Altogether, our results suggest that a primary domestication area in the eastern Mediterranean basin was followed by numerous secondary events across most countries of southern Europe and northern Africa, often involving genetic admixture with genetically rich wild populations, particularly from the western Mediterranean Basin.


Assuntos
Domesticação , Variação Genética , Genoma de Planta , Olea/genética , Filogenia , Evolução Biológica
14.
Plant J ; 101(2): 455-472, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529539

RESUMO

We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short- and long-read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27 969 protein-coding genes and 6747 non-coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach (Prunus persica) diverged around 5.88 million years ago. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). Transposable elements have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. Transposable elements may also be at the origin of important phenotypic differences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.


Assuntos
Sequência de Bases , Elementos de DNA Transponíveis/genética , Genoma de Planta , Prunus dulcis/genética , Prunus persica/genética , Mapeamento Cromossômico , Metilação de DNA , Domesticação , Evolução Molecular , Genes de Plantas/genética , Filogenia , Sementes , Especificidade da Espécie
15.
Mol Biol Evol ; 37(3): 730-756, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702774

RESUMO

Aphids (Aphidoidea) are a diverse group of hemipteran insects that feed on plant phloem sap. A common finding in studies of aphid genomes is the presence of a large number of duplicated genes. However, when these duplications occurred remains unclear, partly due to the high relatedness of sequenced species. To better understand the origin of aphid duplications we sequenced and assembled the genome of Cinara cedri, an early branching lineage (Lachninae) of the Aphididae family. We performed a phylogenomic comparison of this genome with 20 other sequenced genomes, including the available genomes of five other aphids, along with the transcriptomes of two species belonging to Adelgidae (a closely related clade to the aphids) and Coccoidea. We found that gene duplication has been pervasive throughout the evolution of aphids, including many parallel waves of recent, species-specific duplications. Most notably, we identified a consistent set of very ancestral duplications, originating from a large-scale gene duplication predating the diversification of Aphidomorpha (comprising aphids, phylloxerids, and adelgids). Genes duplicated in this ancestral wave are enriched in functions related to traits shared by Aphidomorpha, such as association with endosymbionts, and adaptation to plant defenses and phloem-sap-based diet. The ancestral nature of this duplication wave (106-227 Ma) and the lack of sufficiently conserved synteny make it difficult to conclude whether it originated from a whole-genome duplication event or, alternatively, from a burst of large-scale segmental duplications. Genome sequencing of other aphid species belonging to different Aphidomorpha and related lineages may clarify these findings.


Assuntos
Afídeos/classificação , Afídeos/genética , Duplicação Gênica , Perfilação da Expressão Gênica/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Evolução Molecular , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , Filogenia , Especificidade da Espécie , Sintenia
16.
Nat Genet ; 51(11): 1607-1615, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676864

RESUMO

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.


Assuntos
Mapeamento Cromossômico , Cucurbitaceae/genética , Domesticação , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cucurbitaceae/classificação , Cucurbitaceae/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Melhoramento Vegetal
17.
BMC Biol ; 16(1): 15, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370802

RESUMO

BACKGROUND: Polyploidization is one of the major evolutionary processes that shape eukaryotic genomes, being particularly common in plants. Polyploids can arise through direct genome doubling within a species (autopolyploidization) or through the merging of genomes from distinct species after hybridization (allopolyploidization). The relative contribution of both mechanisms in plant evolution is debated. Here we used phylogenomics to dissect the tempo and mode of duplications in the genome of the olive tree (Olea europaea), one of the first domesticated Mediterranean fruit trees. RESULTS: Our results depict a complex scenario involving at least three past polyploidization events, of which two-at the bases of the family Oleaceae and the tribe Oleeae, respectively-are likely to be the result of ancient allopolyploidization. A more recent polyploidization involves specifically the olive tree and relatives. CONCLUSION: Our results show the power of phylogenomics to distinguish between allo- and auto polyploidization events and clarify the contributions of duplications in the evolutionary history of the olive tree.


Assuntos
Genoma de Planta/genética , Olea/citologia , Olea/genética , Filogenia , Poliploidia
19.
Genome Biol ; 18(1): 27, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28190401

RESUMO

BACKGROUND: The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. RESULTS: To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. CONCLUSIONS: Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution.

20.
Gigascience ; 5: 29, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346392

RESUMO

BACKGROUND: The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n). FINDINGS: A total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome length (1.38 Gb). In addition, the associated fungus Aureobasidium pullulans was partially sequenced. Genome annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349 unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated using the CEGMA pipeline, reached 98.79 %. CONCLUSIONS: The assembled draft genome of O. europaea will provide a valuable resource for the study of the evolution and domestication processes of this important tree, and allow determination of the genetic bases of key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties.


Assuntos
Genoma de Planta , Olea/genética , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , Biblioteca Gênica , Tamanho do Genoma , Região do Mediterrâneo , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA