RESUMO
The global health threat posed by antibiotic resistance has led to new research involving bacteriophage-encoded enzymes. This study characterized a new peptidoglycan-degrading protein and evaluated its synergism with colistin and its antimicrobial efficacy when conjugated with polycationic-polymer nanoparticles. The gene that codes for endolysin in the vB_PaeM_USP2, a Pseudomonas aeruginosa bacteriophage, was cloned and expressed in Escherichia coli. The recombinant endolysin (rEnd2) was purified and its biochemical properties were determined using peptidoglycan substrate. The enzymatic activity was measured through peptidoglycan layer degradation and a decrease in turbidity of permeabilized Gram-negative bacteria. The antimicrobial activity of rEnd2, alone and in combination with colistin, was evaluated by checkerboard assay. The antibacterial activity of the cationic lipid oleylamine (OAM) conjugated with rEnd2 (OAM-rEnd2) was evaluated by time killing assay. The rEnd2 is structurally analogue with other endolysins and showed muramidase activity. The rEnd2 maintained higher activity between pH 6.0 to 7.5, had maximum activity at 35 °C, and was not affected by chaotropic and reducing reagents. It was sensitive to an increase in surfactant concentration, being inactivated by sodium dodecyl sulfate and cetyltrimethylammonium bromide. Ions exhibited neither a positive nor a negative effect on enzyme activity. The rEnd2 showed clear muralytic activity and decreased turbidity of permeabilized Gram-negative bacteria. However, it did not control bacterial growth despite the combination with an antibiotic and its complexation with polycation (OAM-rEnd2 nanoparticle conjugate). The rEnd2 did not show clear antimicrobial activity suggesting further optimization of conditions for its activity or engineering and modification.
RESUMO
The Lucena 1 cell line, derived from the human chronic myeloid leukemia cell line K562 under selective pressure of vincristine supplementation, exhibits multidrug resistance (MDR). This study aims to explore and elucidate the underlying mechanisms driving MDR in the Lucena 1 cell line. A proteomic analysis comparing K562 and Lucena 1 revealed qualitative differences, with a focus on the ATP-dependent efflux pump, Translocase ABCB1, a key contributor to drug resistance. Tubulin analysis identified two unique isoforms, Tubulin beta 8B and alpha chain-like 3, exclusive to Lucena 1, potentially influencing resistance mechanisms. Additionally, the association of Rap1A and Krit1 in cytoskeletal regulation and the presence of STAT1, linked to the urea cycle and tumor development, offered insights into Lucena 1's distinctive biology. The increased expression of carbonic anhydrase I suggested a role in pH regulation. The discovery of COP9, a tumor suppressor targeting p53, further highlighted the Lucena 1 complex molecular landscape. This study offers new insights into the MDR phenotype and its multifactorial consequences in cellular pathways. Thus, unraveling the mechanisms of MDR holds promise for innovating cancer models and antitumor targeted strategies, since inhibiting the P-glycoprotein (P-gp)/ABCB1 protein is not always an effective approach given the associated treatment toxicity.
Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Proteômica , Humanos , Proteômica/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células K562 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Tubulina (Proteína)/metabolismo , Linhagem Celular TumoralRESUMO
The kallikrein-related peptidase KLK2 has restricted expression in the prostate luminal epithelium, and its protein target is unknown. The present work reports the hydrolytic activities of KLK2 on libraries of fluorescence resonance energy-transfer peptides from which the sequence SYRIF was the most susceptible substrate for KLK2. The sequence SYRIF is present at the extracellular N-terminal segment (58SYRIF63Q) of IL-10R2. KLK2 was fully active at pH 8.0-8.2, found only in prostate inflammatory conditions, and strongly activated by sodium citrate and glycosaminoglycans, the quantities and structures controlled by prostate cells. Bone-marrow-derived macrophages (BMDM) have IL-10R2 expressed on the cell surface, which is significantly reduced after KLK2 treatment, as determined by flow cytometry (FACS analysis). The IL-10 inhibition of the inflammatory response to LPS/IFN-γ in BMDM cells due to decreased nitric oxide, TNF-α, and IL-12 p40 levels is significantly reduced upon treatment of these cells with KLK2. Similar experiments with KLK3 did not show these effects. These observations indicate that KLK2 proteolytic activity plays a role in prostate inflammation and makes KLK2 a promising target for prostatitis treatment.
Assuntos
Calicreínas , Humanos , Masculino , Calicreínas/metabolismo , Calicreínas/química , Arginina/metabolismo , Arginina/química , Próstata/metabolismo , Próstata/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Domínios Proteicos , Interleucina-10/metabolismo , Especificidade por SubstratoRESUMO
Actinomycetes are versatile about their metabolism, displaying high capacity to produce bioactive metabolites. Enzymes from actinomycetes represent new opportunities for industrial applications. However, proteases from actinomycetes are poorly described by literature. Thereby, to verify proteolytic potential of actinomycetes, the present study aimed the investigation of bacterial isolates from Caatinga and Atlantic Forest rhizosphere. Fluorescence resonance energy transfer (FRET) peptide libraries were adopted for the evaluations, since they are faster and more qualitative methods, if compared with others described by most reports. A total of 52 microorganisms were inoculated in different culture media (PMB, potato dextrose agar, brain heart infusion agar, Starch Casein Agar and Reasoner's 2A agar), temperatures (12, 20, 30, 37, 45 and 60°C), and saline conditions (0-4 M NaCl), during 7 days. The actinomycetes named as AC 01, 02 and 52 were selected and showed enzymatic abilities under the peptide probes Abz-KLRSSKQ-EDDnp and Abz-KLYSSKQ-EDDnp, achieving enhanced performance at 30 °C. Biochemical parameters were established, showing a predominance of alkaline proteases with activity under saline conditions. Secreted proteases hydrolysed preferentially polar uncharged residues (Y and N) and positively charged groups (R). Phenylmethylsulfonyl fluoride and ethylenediaminetetraacetic acid inhibited the proteins, a characteristic of serine (AC 01 e 02) and metalloproteases (AC 52). All selected strains belonged to Streptomyces genera. In summary, actinomycete strains with halophilic proteolytic abilities were selected, which improve possibilities for their use in detergent formulations, food processing, waste management and industrial bioconversion. It is important to highlight that this is the first report using FRET libraries for proteolytic screening from Caatinga and Atlantic Forest actinobacteria.
Assuntos
Actinobacteria , Peptídeo Hidrolases/metabolismo , Actinomyces , Ágar/metabolismo , Solo , Meios de Cultura/metabolismoRESUMO
Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.
Assuntos
Venenos de Aranha , Aranhas , Animais , Masculino , Feminino , Aranhas/genética , Aranhas/metabolismo , Venenos de Aranha/genética , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Cisteína/metabolismo , Proteômica/métodos , Espectrometria de Massas/métodos , Proteoma/genética , Proteoma/metabolismo , Peptídeos/análiseRESUMO
Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.
Assuntos
Hidrogéis , Nanoestruturas , Amiloide , Animais , Células HeLa , Humanos , Hidrogéis/química , Camundongos , Morfogênese , Células NIH 3T3 , Nanoestruturas/toxicidade , Peptídeos/química , ÁguaRESUMO
The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.
Assuntos
Venenos de Crotalídeos/química , Dimerização , Papaína/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Papaína/química , Papaína/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/efeitos dos fármacosRESUMO
BACKGROUND: Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect and the main vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). In the present study, the authors investigated whether a serine protease activity from the saliva of T. infestans has a role in vasomotor modulation, and in the insect-blood feeding by cleaving and activating protease-activated receptors (PARs). METHODS: T. infestans saliva was chromatographed as previously reported for purification of triapsin, a serine protease. The cleavage activity of triapsin on PAR peptides was investigated based on FRET technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide cleaved by triapsin. NO measurements were performed using the DAN assay (2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured in vessels with or without functional endothelium pre-contracted with phenylephrine (3 µM). Intravital microscopy was used to assess the effect of triapsin on mouse skin microcirculation. RESULTS: Triapsin was able to induce hydrolysis of PAR peptides and showed a higher preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry confirmed a single cleavage site, which corresponds to the activation site of the PAR-2 receptor. Triapsin induced dose-dependent NO release in cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum effect at 17.58 nM. Triapsin purified by gel-filtration chromatography (10-16 to 10-9 M) was applied cumulatively to mouse mesenteric artery rings and showed a potent endothelium-dependent vasodilator effect (EC30 = 10-12 M). Nitric oxide seems to be partially responsible for this vasodilator effect because L-NAME (L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase inhibitor, did not abrogate the vasodilation activated by triapsin. Anti-PAR-2 antibody completely inhibited vasodilation observed in the presence of triapsin activity. Triapsin activity also induced an increase in the mouse ear venular diameter. CONCLUSION: Data from this study suggest a plausible association between triapsin activity mediated PAR-2 activation and vasodilation caused by T. infestans saliva.
RESUMO
Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect and the main vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). In the present study, the authors investigated whether a serine protease activity from the saliva of T. infestans has a role in vasomotor modulation, and in the insect-blood feeding by cleaving and activating protease-activated receptors (PARs). Methods T. infestans saliva was chromatographed as previously reported for purification of triapsin, a serine protease. The cleavage activity of triapsin on PAR peptides was investigated based on FRET technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide cleaved by triapsin. NO measurements were performed using the DAN assay (2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured in vessels with or without functional endothelium pre-contracted with phenylephrine (3 µM). Intravital microscopy was used to assess the effect of triapsin on mouse skin microcirculation. Results Triapsin was able to induce hydrolysis of PAR peptides and showed a higher preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry confirmed a single cleavage site, which corresponds to the activation site of the PAR-2 receptor. Triapsin induced dose-dependent NO release in cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum effect at 17.58 nM. Triapsin purified by gel-filtration chromatography (10-16 to 10-9 M) was applied cumulatively to mouse mesenteric artery rings and showed a potent endothelium-dependent vasodilator effect (EC30 = 10-12 M). Nitric oxide seems to be partially responsible for this vasodilator effect because L-NAME (L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase inhibitor, did not abrogate the vasodilation activated by triapsin. Anti-PAR-2 antibody completely inhibited vasodilation observed in the presence of triapsin activity. Triapsin activity also induced an increase in the mouse ear venular diameter. Conclusion Data from this study suggest a plausible association between triapsin activity mediated PAR-2 activation and vasodilation caused by T. infestans saliva.(AU)
Assuntos
Animais , Peptídeos , Triatoma , Trypanosoma cruzi , Vasodilatação , Cromatografia , Receptor PAR-2 , Óxido NítricoRESUMO
Nuclear distribution element-like 1 (NDEL1) enzyme activity is important for neuritogenesis, neuronal migration, and neurodevelopment. We reported previously lower NDEL1 enzyme activity in blood of treated first episode psychosis and chronic schizophrenia (SCZ) compared to healthy control subjects, with even lower activity in treatment resistant chronic SCZ patients, implicating NDEL1 activity in SCZ. Herein, higher NDEL1 activity was observed in the blood and several brain regions of a validated animal model for SCZ at baseline. In addition, long-term treatment with typical or atypical antipsychotics, under conditions in which SCZ-like phenotypes were reported to be reversed in this animal model for SCZ, showed a significant NDEL1 activity reduction in blood and brain regions which is in line with clinical data. Importantly, these results support measuring NDEL1 enzyme activity in the peripheral blood to predict changes in NDEL1 activity in the CNS. Also, acute administration of psychostimulants, at levels reported to induce SCZ-like phenotype in normal rat strains, increased NDEL1 enzyme activity in blood. Therefore, alterations in NDEL1 activity after treatment with antipsychotics or psychostimulants may suggest a possible modulation of NDEL1 activity secondary to neurotransmission homeostasis and provide new insights into the role of NDEL1 in SCZ pathophysiology.
Assuntos
Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Esquizofrenia/metabolismo , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/uso terapêutico , Clozapina/farmacologia , Cisteína Endopeptidases/sangue , Haloperidol/farmacologia , Hipocampo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Esquizofrenia/fisiopatologiaRESUMO
Polymorphonuclear neutrophils contain at least four serine endopeptidases, namely neutrophil elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and NSP4, which contribute to the regulation of infection and of inflammatory processes. In physiological conditions, endogenous inhibitors including α2-macroglobulin (α2-M), serpins [α1-proteinase inhibitor (α1-PI)], monocyte neutrophil elastase inhibitor (MNEI), α1-antichymotrypsin, and locally produced chelonianins (elafin, SLPI) control excessive proteolytic activity of neutrophilic serine proteinases. In contrast to human NE (hNE), hPR3 is weakly inhibited by α1-PI and MNEI but not by SLPI. α2-M is a large spectrum inhibitor that traps a variety of proteinases in response to cleavage(s) in its bait region. We report here that α2-M was more rapidly processed by hNE than hPR3 or hCatG. This was confirmed by the observation that the association between α2-M and hPR3 is governed by a kass in the ≤ 105 m-1 ·s-1 range. Since α2-M-trapped proteinases retain peptidase activity, we first predicted the putative cleavage sites within the α2-M bait region (residues 690-728) using kinetic and molecular modeling approaches. We then identified by mass spectrum analysis the cleavage sites of hPR3 in a synthetic peptide spanning the 39-residue bait region of α2-M (39pep-α2-M). Since the 39pep-α2-M peptide and the corresponding bait area in the whole protein do not contain sequences with a high probability of specific cleavage by hPR3 and were indeed only slowly cleaved by hPR3, it can be concluded that α2-M is a poor inhibitor of hPR3. The resistance of hPR3 to inhibition by endogenous inhibitors explains at least in part its role in tissue injury during chronic inflammatory diseases and its well-recognized function of major target autoantigen in granulomatosis with polyangiitis.
Assuntos
Simulação de Acoplamento Molecular , Mieloblastina/química , alfa 2-Macroglobulinas Associadas à Gravidez/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida/métodos , Humanos , Cinética , Espectrometria de Massas/métodos , Mieloblastina/genética , Mieloblastina/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , alfa 2-Macroglobulinas Associadas à Gravidez/genética , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Proteínas Recombinantes/metabolismoRESUMO
Thimet oligopeptidase (TOP, EC 3.4.24.15) and neurolysin (NEL, EC 3.4.24.16) are closely related zinc-dependent metalo-oligopeptidases, which take part in the metabolism of oligopeptides (from 5 to 17 amino acid residues) inside and outside cells. Both peptidases are ubiquitously distributed in tissues. TOP is one of the main intracellular peptide-processing enzymes being important for the antigen selection in the MHC Class I presentation route, while NEL function has been more associated with the extracellular degradation of neurotensin. Despite efforts being made to develop specific inhibitors for these peptidases, the most used are: CPP-Ala-Ala-Tyr-PABA, described by Orlowski et al. in 1988, and CPP-Ala-Aib-Tyr-PABA (JA-2) that is an analog more resistant to proteolysis, which development was made by Shrimpton et al. in 2000. In the present work, we describe other analogs of these compounds but, with better discriminatory capacity to inhibit specifically NEL or TOP. The modifications introduced in these new analogs were based on a key difference existent in the extended binding sites of NEL and TOP: the negatively charged Glu469 residue of TOP corresponds to the positively charged Arg470 residue of NEL. These residues are in position to interact with the residue at the P1' and/or P2' of their substrates (mimicked by the Ala-Ala/P1'-P2' residues of the CPP-Ala-Ala-Tyr-PABA). Therefore, exploring this single difference, the following compounds were synthesized: CPP-Asp-Ala-Tyr-PABA, CPP-Arg-Ala-Tyr-PABA, CPP-Ala-Asp-Tyr-PABA, CPP-Ala-Arg-Tyr-PABA. Confirming the predictions, the replacement of each non-charged residue of the internal portion Ala-Ala by a charged residue Asp or Arg resulted in compounds with higher selectivity for NEL or TOP, especially due to the electrostatic attraction or repulsion by the NEL Arg470 or TOP Glu469 residue. The CPP-Asp-Ala-Tyr-PABA and CPP-Ala-Asp-Tyr-PABA presented higher affinities for NEL, and, the CFP-Ala-Arg-Tyr-PABA showed higher affinity for TOP.
Assuntos
Metaloendopeptidases/metabolismo , Oligopeptídeos/farmacologia , Cinética , Metaloendopeptidases/antagonistas & inibidores , Mutação/genética , Oligopeptídeos/síntese química , Oligopeptídeos/química , Especificidade por Substrato/efeitos dos fármacosRESUMO
Composting operation systems are valuable sources of microorganisms and enzymes. This work reports the assessment of proteolytic enzymes from cultivable bacteria isolated from a composting facility of the São Paulo Zoo Park (SPZPF), São Paulo, Brazil. Three hundred bacterial isolates were obtained and identified based on 16S rRNA gene as belonging to 13 different genera. The most common genus among the isolates was Bacillus (67%); some of which show high proteolytic activity in their culture media. Biochemical assays of hydrolytic activities using FRET peptides as substrates allowed the characterization of a repertoire of serine proteases and metalloproteases with different molecular weights secreted by Bacillus strains isolated from composting. Furthermore, thermostable serine and metalloproteases were detected in the composting leachate, which might be of interest for industrial applications.
Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/biossíntese , Compostagem , Peptídeo Hidrolases/biossíntese , Bacillus/classificação , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Brasil , Peptídeo Hidrolases/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismoRESUMO
ABSTRACT Matrix Assisted Laser Desorption/Ionization and Time of Flight mass spectrometry (MALDI-TOF MS) is a powerful tool for the identification of bacteria through the detection and analysis of their proteins or fragments derived from ribosomes. Slight sequence variations in conserved ribosomal proteins distinguish microorganisms at the subspecies and strain levels. Characterization of Leptospira spp. by 16S RNA sequencing is costly and time-consuming, and recent studies have shown that closely related species (e.g., Leptospira interrogans and Leptospira kirschneri) may not be discriminated using this technology. Herein, we report an in-house Leptospira reference spectra database using Leptospira reference strains that were validated with a collection of well-identified Brazilian isolates kept in the Bacterial Zoonosis Laboratory at the Veterinary Preventive Medicine and Animal Health Department at Sao Paulo University. In addition, L. interrogans and L. kirschneri were differentiated using an in-depth mass spectrometry analysis with ClinProTools™ software. In conclusion, our in-house reference spectra database has the necessary accuracy to differentiate pathogenic and non-pathogenic species and to distinguish L. interrogans and L. kirschneri.
Assuntos
Humanos , Técnicas de Tipagem Bacteriana/métodos , Espectrometria de Massas em Tandem/métodos , Leptospira/isolamento & purificação , Leptospirose/microbiologia , Brasil , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Leptospira/classificação , Leptospira/genética , Leptospira/químicaRESUMO
Matrix Assisted Laser Desorption/Ionization and Time of Flight mass spectrometry (MALDI-TOF MS) is a powerful tool for the identification of bacteria through the detection and analysis of their proteins or fragments derived from ribosomes. Slight sequence variations in conserved ribosomal proteins distinguish microorganisms at the subspecies and strain levels. Characterization of Leptospira spp. by 16S RNA sequencing is costly and time-consuming, and recent studies have shown that closely related species (e.g., Leptospira interrogans and Leptospira kirschneri) may not be discriminated using this technology. Herein, we report an in-house Leptospira reference spectra database using Leptospira reference strains that were validated with a collection of well-identified Brazilian isolates kept in the Bacterial Zoonosis Laboratory at the Veterinary Preventive Medicine and Animal Health Department at Sao Paulo University. In addition, L. interrogans and L. kirschneri were differentiated using an in-depth mass spectrometry analysis with ClinProTools™ software. In conclusion, our in-house reference spectra database has the necessary accuracy to differentiate pathogenic and non-pathogenic species and to distinguish L. interrogans and L. kirschneri.
Assuntos
Técnicas de Tipagem Bacteriana/métodos , Leptospira/isolamento & purificação , Leptospirose/microbiologia , Espectrometria de Massas em Tandem/métodos , Brasil , DNA Bacteriano/genética , Humanos , Leptospira/química , Leptospira/classificação , Leptospira/genética , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon Natrialba magadii. Many extracellular proteases have been characterized from archaea to bacteria as adapted to hypersaline environments retaining function and stability until 4.0M NaCl. As observed in other secreted halolysins, this stability can be related to the presence of a C-terminal extension (CTE) sequence. In the present work, we compared the biochemical properties of recombinant Nep protease with the truncated form at the 134 amino acids CTE (Nep∆CTE), that was more active in 4M NaCl than the non-truncated wild type enzyme. Comparable to the wild type, Nep∆CTE protease is irreversibly inactivated at low salt solutions. The substrate specificity of the truncated Nep∆CTE was similar to that of wild type form as demonstrated by a combinatorial library of FRET substrates. The enzyme stability, the effect of different salts and the thermodynamics assays using different lengths of substrates demonstrated similarities between the two forms. Altogether, these data provide further information on the stability and structural determinants of halolysins under different salinities, especially concerning the enzymatic behavior.
Assuntos
Espaço Extracelular/enzimologia , Halobacteriaceae/citologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Sais/farmacologia , Relação Dose-Resposta a Droga , Halobacteriaceae/enzimologia , Cinética , Solventes/química , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Cathepsins L are the major digestive peptidases in the beetle Tenebrio molitor. Two digestive cathepsins L (TmCAL2 and TmCAL3) from it had their 3D structures solved. The aim of this paper was to study in details TmCAL3 specificity and properties and relate them to its 3D structure. Recombinant TmCAL3 was assayed with 64 oligopeptides with different amino acid replacements in positions P2, P1, P1' and P2'. Results showed that TmCAL3 S2 specificity differs from the human enzyme and that its specificities also explain why on autoactivation two propeptide residues remain in the enzyme. Data on free energy of binding and of activation showed that S1 and S2' are mainly involved in substrate binding, S1' acts in substrate binding and catalysis, whereas S2 is implied mainly in catalysis. Enzyme subsite residues were identified by docking with the same oligopeptide used for kinetics. The subsite hydrophobicities were calculated from the efficiency of hydrolysis of different amino acid replacements in the peptide and from docking data. The results were closer for S1 and S2' than for S1' and S2, indicating that the residue subsites that were more involved in transition state binding are different from those binding the substrate seen in docking. Besides TmCAL1-3, there are nine other cathepsins L, most of them more expressed at midgut. They are supposed to be directed to lysosomes by a Drosophila-like Lerp receptor and/or motifs in their prodomains. The mannose 6-phosphate lysosomal sorting machinery is absent from T. molitor transcriptome. Cathepsin L direction to midgut contents seems to depend on overexpression.
Assuntos
Catepsina L/metabolismo , Tenebrio/enzimologia , Sequência de Aminoácidos , Animais , Catálise , Catepsina L/química , Trato Gastrointestinal/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lisossomos/enzimologia , Simulação de Acoplamento Molecular , Sinais Direcionadores de Proteínas , Especificidade por SubstratoRESUMO
Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid ß peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to â¼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.
Assuntos
Endossomos/metabolismo , Fosfatos de Inositol/metabolismo , Insulisina/metabolismo , Fosfatidilinositóis/metabolismo , Androstadienos/farmacologia , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Endossomos/efeitos dos fármacos , Ativação Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Insulisina/química , Insulisina/genética , Lipossomos/química , Lipossomos/metabolismo , Mutação , WortmaninaRESUMO
Human kallikrein 6 (KLK6) is highly expressed in the central nervous system and with elevated level in demyelinating disease. KLK6 has a very restricted specificity for arginine (R) and hydrolyses myelin basic protein, protein activator receptors and human ionotropic glutamate receptor subunits. Here we report a previously unreported activity of KLK6 on peptides containing clusters of basic amino acids, as in synthetic fluorogenic peptidyl-Arg-7-amino-4-carbamoylmethylcoumarin (peptidyl-ACC) peptides and FRET peptides in the format of Abz-peptidyl-Q-EDDnp (where Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-(2,4-dinitrophenyl) ethylenediamine), in which pairs or sequences of basic amino acids (R or K) were introduced. Surprisingly, KLK6 hydrolyzed the fluorogenic peptides Bz-A-R↓R-ACC and Z-R↓R-MCA between the two R groups, resulting in non-fluorescent products. FRET peptides containing furin processing sequences of human MMP-14, nerve growth factor (NGF), Neurotrophin-3 (NT-3) and Neurotrophin-4 (NT-4) were cleaved by KLK6 at the same position expected by furin. Finally, KLK6 cleaved FRET peptides derived from human proenkephalin after the KR, the more frequent basic residues flanking enkephalins in human proenkephalin sequence. This result suggests the ability of KLK6 to release enkephalin from proenkephalin precursors and resembles furin a canonical processing proteolytic enzyme. Molecular models of peptides were built into the KLK6 structure and the marked preference of the cut between the two R of the examined peptides was related to the extended conformation of the substrates.
Assuntos
Calicreínas/metabolismo , Cinética , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Aminoácidos Básicos/química , Aminoácidos Básicos/genética , Encefalinas/química , Encefalinas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Furina/química , Furina/metabolismo , Humanos , Hidrólise , Calicreínas/química , Calicreínas/genética , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Modelos Moleculares , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Neurotrofina 3 , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeos/metabolismo , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Proteólise , Especificidade por SubstratoRESUMO
Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin αIIbß3 through interactions with the KGD/KGE sequence motif in huPK. Integrin αIIbß3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS473, ERK1/2, and p38 MAPK, and to Ca2+ release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and αIIbß3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis.