Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 14(1): 604, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737450

RESUMO

Blood lipids and metabolites are markers of current health and future disease risk. Here, we describe plasma nuclear magnetic resonance (NMR) biomarker data for 118,461 participants in the UK Biobank. The biomarkers cover 249 measures of lipoprotein lipids, fatty acids, and small molecules such as amino acids, ketones, and glycolysis metabolites. We provide an atlas of associations of these biomarkers to prevalence, incidence, and mortality of over 700 common diseases ( nightingalehealth.com/atlas ). The results reveal a plethora of biomarker associations, including susceptibility to infectious diseases and risk of various cancers, joint disorders, and mental health outcomes, indicating that abundant circulating lipids and metabolites are risk markers beyond cardiometabolic diseases. Clustering analyses indicate similar biomarker association patterns across different disease types, suggesting latent systemic connectivity in the susceptibility to a diverse set of diseases. This work highlights the value of NMR based metabolic biomarker profiling in large biobanks for public health research and translation.


Assuntos
Bancos de Espécimes Biológicos , Lipídeos , Humanos , Biomarcadores , Espectroscopia de Ressonância Magnética/métodos , Reino Unido/epidemiologia
2.
Elife ; 112022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073519

RESUMO

Pleiotropy and genetic correlation are widespread features in genome-wide association studies (GWAS), but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate that the effect directions of variants acting on biology between metabolite pairs often contrast with those of upstream or downstream variants as well as the polygenic background. Thus, we find that these outlier variants often reflect biology local to the traits. Finally, we explore the implications for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.


Assuntos
Pleiotropia Genética , Estudo de Associação Genômica Ampla , Aminoácidos/genética , Cetonas , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Lancet Reg Health Eur ; 21: 100457, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35832062

RESUMO

Background: The direct effects of general adiposity (body mass index (BMI)) and central adiposity (waist-to-hip-ratio (WHR)) on circulating lipoproteins, lipids, and metabolites are unknown. Methods: We used new metabolic data from UK Biobank (N=109,532, a five-fold higher N over previous studies). EDTA-plasma was used to quantify 249 traits with nuclear-magnetic-resonance spectroscopy including subclass-specific lipoprotein concentrations and lipid content, plus pre-glycemic and inflammatory metabolites. We used univariable and multivariable two-stage least-squares regression models with genetic risk scores for BMI and WHR as instruments to estimate total (unadjusted) and direct (mutually-adjusted) effects of BMI and WHR on metabolic traits; plus effects on statin use and interaction by sex, statin use, and age (proxy for medication use). Findings: Higher BMI decreased apolipoprotein B and low-density lipoprotein cholesterol (LDL-C) before and after WHR-adjustment, whilst BMI increased triglycerides only before WHR-adjustment. These effects of WHR were larger and BMI-independent. Direct effects differed markedly by sex, e.g., triglycerides increased only with BMI among men, and only with WHR among women. Adiposity measures increased statin use and showed metabolic effects which differed by statin use and age. Among the youngest (38-53y, statins-5%), BMI and WHR (per-SD) increased LDL-C (total effects: 0.04-SD, 95%CI=-0.01,0.08 and 0.10-SD, 95%CI=0.02,0.17 respectively), but only WHR directly. Among the oldest (63-73y, statins-29%), BMI and WHR directly lowered LDL-C (-0.19-SD, 95%CI=-0.27,-0.11 and -0.05-SD, 95%CI=-0.16,0.06 respectively). Interpretation: Excess adiposity likely raises atherogenic lipid and metabolite levels exclusively via adiposity stored centrally, particularly among women. Apparent effects of adiposity on lowering LDL-C are likely explained by an effect of adiposity on statin use. Funding: UK Medical Research Council; British Heart Foundation; Novo Nordisk; National Institute for Health Research; Wellcome Trust; Cancer Research UK.

4.
Elife ; 102021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33942721

RESUMO

Biomarkers of low-grade inflammation have been associated with susceptibility to a severe infectious disease course, even when measured prior to disease onset. We investigated whether metabolic biomarkers measured by nuclear magnetic resonance (NMR) spectroscopy could be associated with susceptibility to severe pneumonia (2507 hospitalised or fatal cases) and severe COVID-19 (652 hospitalised cases) in 105,146 generally healthy individuals from UK Biobank, with blood samples collected 2007-2010. The overall signature of metabolic biomarker associations was similar for the risk of severe pneumonia and severe COVID-19. A multi-biomarker score, comprised of 25 proteins, fatty acids, amino acids, and lipids, was associated equally strongly with enhanced susceptibility to severe COVID-19 (odds ratio 2.9 [95%CI 2.1-3.8] for highest vs lowest quintile) and severe pneumonia events occurring 7-11 years after blood sampling (2.6 [1.7-3.9]). However, the risk for severe pneumonia occurring during the first 2 years after blood sampling for people with elevated levels of the multi-biomarker score was over four times higher than for long-term risk (8.0 [4.1-15.6]). If these hypothesis generating findings on increased susceptibility to severe pneumonia during the first few years after blood sampling extend to severe COVID-19, metabolic biomarker profiling could potentially complement existing tools for identifying individuals at high risk. These results provide novel molecular understanding on how metabolic biomarkers reflect the susceptibility to severe COVID-19 and other infections in the general population.


National policies for mitigating the COVID-19 pandemic include stricter measures for people considered to be at high risk of severe and potentially fatal cases of the disease. Although older age and pre-existing health conditions are strong risk factors, it is poorly understood why susceptibility varies so widely in the population. People with cardiometabolic diseases, such as diabetes and liver diseases, or chronic inflammation are at higher risk of severe COVID-19 and other infections including pneumonia. These conditions alter the molecules circulating in the blood, providing potential 'biomarkers' to determine whether a person is more likely to develop a fatal infection. Uncovering these blood biomarkers could help to identify people who are prone to life-threatening infections despite not having ever been diagnosed with a cardiometabolic disease. To find these biomarkers, Julkunen et al. studied blood samples that had been collected from 105,000 healthy individuals in the United Kingdom over ten years ago. The data showed that individuals with biomarkers linked to low-grade inflammation and cardiometabolic disease were more likely to have died or been hospitalised with pneumonia. A score based on 25 of these biomarkers provided the best predictor of severe pneumonia. This biomarker score performed up to four times better within the first few years after blood sampling compared to predicting cases of pneumonia a decade later. The same blood biomarker changes were also linked with developing severe COVID-19 over ten years after the blood samples had been collected. The predictive value of the biomarker score was similar for both severe COVID-19 and the long-term risk of severe pneumonia. Julkunen et al. propose that the metabolic biomarkers reflect inhibited immunity that impairs response to infections. The results from over 100,000 individuals suggest that these blood biomarkers may help to identify people at high risk of severe COVID-19 or other infectious diseases.


Assuntos
COVID-19/sangue , Metaboloma , Aminoácidos/sangue , Biomarcadores/sangue , COVID-19/epidemiologia , Ácidos Graxos/sangue , Humanos , Lipídeos/sangue , Espectroscopia de Ressonância Magnética , Programas de Rastreamento/estatística & dados numéricos
5.
Nat Commun ; 11(1): 6136, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262326

RESUMO

We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications.


Assuntos
Antineoplásicos/farmacologia , Aprendizado de Máquina , Bortezomib/farmacologia , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Interações Medicamentosas , Humanos , Linfoma/tratamento farmacológico , Medicina de Precisão
6.
Bioinformatics ; 34(13): i509-i518, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949975

RESUMO

Motivation: Many inference problems in bioinformatics, including drug bioactivity prediction, can be formulated as pairwise learning problems, in which one is interested in making predictions for pairs of objects, e.g. drugs and their targets. Kernel-based approaches have emerged as powerful tools for solving problems of that kind, and especially multiple kernel learning (MKL) offers promising benefits as it enables integrating various types of complex biomedical information sources in the form of kernels, along with learning their importance for the prediction task. However, the immense size of pairwise kernel spaces remains a major bottleneck, making the existing MKL algorithms computationally infeasible even for small number of input pairs. Results: We introduce pairwiseMKL, the first method for time- and memory-efficient learning with multiple pairwise kernels. pairwiseMKL first determines the mixture weights of the input pairwise kernels, and then learns the pairwise prediction function. Both steps are performed efficiently without explicit computation of the massive pairwise matrices, therefore making the method applicable to solving large pairwise learning problems. We demonstrate the performance of pairwiseMKL in two related tasks of quantitative drug bioactivity prediction using up to 167 995 bioactivity measurements and 3120 pairwise kernels: (i) prediction of anticancer efficacy of drug compounds across a large panel of cancer cell lines; and (ii) prediction of target profiles of anticancer compounds across their kinome-wide target spaces. We show that pairwiseMKL provides accurate predictions using sparse solutions in terms of selected kernels, and therefore it automatically identifies also data sources relevant for the prediction problem. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Máquina de Vetores de Suporte , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais , Software , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA