Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Blood Cancer J ; 14(1): 156, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261477

RESUMO

Multiple myeloma (MM) is a hematological malignancy whose curability is greatly challenged by recurrent patient relapses and therapy resistance. We have previously proposed the high expression of ADAM8, ADAM9 and ADAM15 (A Disintegrin And Metalloproteinase 8/9/15) as adverse prognostic markers in MM. This study focused on the so far scarcely researched role of ADAM8/9/15 in MM using two patient cohorts and seven human MM cell lines (HMCL). High ADAM8/9/15 expression was associated with high-risk cytogenetic abnormalities and extramedullary disease. Furthermore, ADAM8/15 expression increased with MM progression and in relapsed/refractory MM compared to untreated patient samples. RNA sequencing and gene set enrichment analysis comparing ADAM8/9/15high/low patient samples revealed an upregulation of proliferation markers and proliferation-associated gene sets in ADAM8/9/15high patient samples. High ADAM8/9/15 expression correlated with high Ki67 and high ADAM8/15 expression with high MYC protein expression in immunohistochemical stainings of patient tissue. Conversely, siRNA-mediated knockdown of ADAM8/9/15 in HMCL downregulated proliferation-related gene sets. Western blotting revealed that ADAM8 knockdown regulated IGF1R/AKT signaling and ADAM9 knockdown decreased mTOR activation. Lastly, high ADAM8/9/15 expression levels were verified as prognostic markers independent of Ki67/MYC expression and/or high-risk abnormalities. Overall, these findings suggest that ADAM8/9/15 play a role in MM progression and proliferation signaling.


Assuntos
Proteínas ADAM , Proliferação de Células , Progressão da Doença , Proteínas de Membrana , Mieloma Múltiplo , Transdução de Sinais , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Masculino , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Biomarcadores Tumorais , Idoso
2.
Biomater Adv ; 166: 214047, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39303656

RESUMO

Multiple myeloma bone disease (MMBD) is characterized by the growth of malignant plasma cells in bone marrow, leading to an imbalance in bone (re)modeling favoring excessive resorption. Loss of bone mass and altered microstructure characterize MMBD in humans and preclinical animal models, although, no study to date has examined bone composition or material properties. We hypothesized that MMBD alters bone composition, mineral crystal properties and mechanical properties in the MOPC315.BM.Luc model after intra-tibial injection of myeloma cells and three weeks of daily in vivo tibial loading. Decreased cortical bone elastic modulus and hardness measured by nanoindentation of tibiae were observed in MM-injected mice compared to PBS-injected mice, whereas cortical bone composition, mineral crystal properties measured by Fourier-transform infrared imaging or small angle X-ray scattering, respectively remained unchanged. However, MM-injected mice had thinner cancellous bone mineral particles compared to PBS-injected mice. Mechanical loading did not lead to altered cortical bone composition, mineral structure, or mechanical properties in the context of MM. Unexpectedly, we observed the intra-tibial injection itself altered the material composition of bone, manifested by increased matrix mineralization and crystal size of the hydroxyapatite crystals in the bone matrix. In conclusion, our data suggest that mechanical stimuli can be used as an adjuvant bone anabolic therapy in patients with MMBD to rebuild bone with unaltered composition and mineral structure to reduce subsequent fracture risk.

3.
Bone ; 189: 117236, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39151745

RESUMO

Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 µm3 range compared to control samples. In the larger lacunae 900-3000 µm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes, and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.


Assuntos
Mieloma Múltiplo , Osteócitos , Microtomografia por Raio-X , Humanos , Osteócitos/patologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/diagnóstico por imagem , Idoso , Masculino , Feminino , Biópsia , Pessoa de Meia-Idade , Osso e Ossos/patologia , Osso e Ossos/diagnóstico por imagem , Imageamento Tridimensional , Idoso de 80 Anos ou mais , Paraproteinemias/patologia , Paraproteinemias/diagnóstico por imagem , Gamopatia Monoclonal de Significância Indeterminada/patologia , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico por imagem
4.
Acta Biomater ; 184: 210-225, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969078

RESUMO

Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment. Here we established a biomimetic 3D bone model by utilizing a state-of-art perfusion bioreactor platform where immortomouse/Dmp1-GFP-derived osteoblastic IDG-SW3 cells were differentiated into mature osteocytes. We evaluated proliferation and differentiation properties of the cells on 3D microporous scaffolds of decellularized bone (dBone), poly(L-lactide-co-trimethylene carbonate) lactide (LTMC), and beta-tricalcium phosphate (ß-TCP) under physiological fluid flow conditions over 21 days. Osteocyte viability and proliferation were similar on the scaffolds with equal distribution of IDG-SW3 cells on dBone and LTMC scaffolds. After seven days, the differentiation marker alkaline phosphatase (Alpl), dentin matrix acidic phosphoprotein 1 (Dmp1), and sclerostin (Sost) were significantly upregulated in IDG-SW3 cells (p = 0.05) on LTMC scaffolds under fluid flow conditions at 1.7 ml/min, indicating rapid and efficient maturation into osteocytes. Osteocytes responded by inducing the mechanoresponsive genes FBJ osteosarcoma oncogene (Fos) and prostaglandin-endoperoxide synthase 2 (Ptgs2) under perfusion and dynamic compressive loading at 1 Hz with 5 % strain. Together, we successfully created a 3D biomimetic platform as a robust tool to evaluate osteocyte differentiation and mechanobiology in vitro while recapitulating in vivo mechanical cues such as fluid flow within the lacuno-canalicular network. STATEMENT OF SIGNIFICANCE: This study highlights the importance of creating a three-dimensional (3D) in vitro model to study osteocyte differentiation and mechanobiology, as cellular functions are limited in two-dimensional (2D) models lacking in vivo tissue organization. By using a perfusion bioreactor platform, physiological conditions of fluid flow and compressive loading were mimicked to which osteocytes are exposed in vivo. Microporous poly(L-lactide-co-trimethylene carbonate) lactide (LTMC) scaffolds in 3D are identified as a valuable tool to create a favorable environment for osteocyte differentiation and to enable mechanical stimulation of osteocytes by perfusion and compressive loading. The LTMC platform imitates the mechanical bone environment of osteocytes, allowing the analysis of the interaction with other cell types in bone under in vivo biophysical stimuli.


Assuntos
Reatores Biológicos , Diferenciação Celular , Osteócitos , Osteócitos/citologia , Osteócitos/metabolismo , Animais , Alicerces Teciduais/química , Camundongos , Perfusão , Estresse Mecânico , Linhagem Celular , Proliferação de Células , Força Compressiva , Modelos Biológicos
5.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38598843

RESUMO

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Assuntos
Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Apoptose , Técnicas de Cocultura , Linhagem Celular Tumoral , Agregação Celular , Sobrevivência Celular
7.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568823

RESUMO

Multiple myeloma (MM) frequently induces persisting osteolytic manifestations despite hematologic treatment response. This study aimed to establish a biometrically valid study endpoint for bone remineralization through quantitative and qualitative analyses in sequential CT scans. Twenty patients (seven women, 58 ± 8 years) with newly diagnosed MM received standardized induction therapy comprising the anti-SLAMF7 antibody elotuzumab, carfilzomib, lenalidomide, and dexamethasone (E-KRd). All patients underwent whole-body low-dose CT scans before and after six cycles of E-KRd. Two radiologists independently recorded osteolytic lesion sizes, as well as the presence of cortical destruction, pathologic fractures, rim and trabecular sclerosis. Bland-Altman analyses and Krippendorff's α were employed to assess inter-reader reliability, which was high for lesion size measurement (standard error 1.2 mm) and all qualitative criteria assessed (α ≥ 0.74). After six cycles of E-KRd induction, osteolytic lesion size decreased by 22% (p < 0.001). While lesion size response did not correlate with the initial lesion size at baseline imaging (Pearson's r = 0.144), logistic regression analysis revealed that the majority of responding osteolyses exhibited trabecular sclerosis (p < 0.001). The sum of osteolytic lesion sizes on sequential CT scans defines a reliable study endpoint to characterize bone remineralization. Patient level response is strongly associated with the presence of trabecular sclerosis.

9.
Support Care Cancer ; 30(11): 9615-9623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36190557

RESUMO

PURPOSE: Multiple myeloma (MM) is a severe hemato-oncological disease with high mortality and increasing incidence rate. Since evidence on exercise therapy in MM patients remains limited, this study examines feasibility, adherence, and efficacy based on real-life data from an oncologic care structure. METHODS: A data evaluation of MM patients who participated in the oncologic exercise and movement therapy (OTT) at the Cologne University Hospital between 2012 and 2019 was conducted. The patient flow was incrementally reduced to four cohorts, intention-to-treat cohort (ITTC), safety cohort (SC), adherence cohort (AC), and efficacy cohort (EC). Cohorts were evaluated descriptively and by means of correlation analysis as well as group and time comparisons. RESULTS: Thirty patients registered at the OTT between 2012 and 2019 (ITTC). The SC (N = 26) attended exercise therapy on average about one session per week over a period of 8 months. One-third dropped out within 3 months. In the AC (N = 15), BMI at baseline exhibited a strong and very significant negative correlation with exercise adherence. In the EC (N = 8), a significant improvement in physical functioning and a tendency towards significance in fatigue reduction between two measurement points was observed. No adverse events were documented. CONCLUSIONS: The present observatory study reveals safety and feasibility while indicating adherence and efficacy of exercising MM patients under real-life therapy circumstances. Found obstacles to exercising as well as improvements in questionnaire scale scores need to be further examined in confirmatory study designs.


Assuntos
Mieloma Múltiplo , Humanos , Estudos de Viabilidade , Mieloma Múltiplo/terapia , Terapia por Exercício/efeitos adversos , Exercício Físico , Inquéritos e Questionários
10.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917250

RESUMO

Limiting bone resorption and regenerating bone tissue are treatment goals in myeloma bone disease (MMBD). Physical stimuli such as mechanical loading prevent bone destruction and enhance bone mass in the MOPC315.BM.Luc model of MMBD. It is unknown whether treatment with the Bruton's tyrosine kinase inhibitor CC-292 (spebrutinib), which regulates osteoclast differentiation and function, augments the anabolic effect of mechanical loading. CC-292 was administered alone and in combination with axial compressive tibial loading in the MOPC315.BM.Luc model for three weeks. However, neither CC-292 alone nor its use in combination with mechanical loading was more effective in reducing osteolytic bone disease or rescuing bone mass than mechanical stimuli alone, as evidenced by microcomputed tomography (microCT) and histomorphometric analysis. Further studies are needed to investigate novel anti-myeloma and anti-resorptive strategies in combination with physical stimuli to improve treatment of MMBD.


Assuntos
Acrilamidas/administração & dosagem , Doenças Ósseas/etiologia , Doenças Ósseas/prevenção & controle , Mieloma Múltiplo/complicações , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Estresse Mecânico , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Animais , Doenças Ósseas/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Osteólise/etiologia , Osteólise/patologia , Osteólise/prevenção & controle , Microtomografia por Raio-X
11.
Acta Biomater ; 119: 247-258, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130307

RESUMO

Bone continually adapts to changing external loading conditions via (re)modeling (modeling and remodeling) processes. While physical activity is known to beneficially enhance bone mass in healthy individuals, little is known in how physical stimuli affect osteolytic bone destruction in patients suffering from multiple myeloma bone disease. Multiple myeloma (MM) is caused by malignant plasma cells in the bone marrow, shifting the balance in bone remodeling towards massive resorption. We hypothesized that in vivo tibial mechanical loading has anabolic effects in mice with locally injected MOPC315.BM.Luc cells. Conventional microCT analysis revealed enhanced cortical bone mass and microstructure in loaded compared to nonloaded mice. State-of-the-art time-lapse microCT based image analysis demonstrated bone (re)modeling processes at the endosteal and periosteal surfaces as the underlying causes of increased bone mass. Loading prevented the progression and development of osteolytic destruction. Physical stimuli also diminished local MM cell growth and dissemination evidenced by quantification of MM cell-specific immunoglobulin A levels in the serum of mice and by bioluminescence analysis. These data indicate that mechanical loading not only rescues the bone phenotype, but also exerts cell-extrinsic anti-myeloma effects in the MOPC315.BM.Luc model. In conclusion, the use of physical stimuli should be further investigated as an anabolic treatment for osteolytic bone destruction in patients with MM.


Assuntos
Mieloma Múltiplo , Osteólise , Animais , Medula Óssea , Remodelação Óssea , Osso e Ossos , Humanos , Camundongos , Mieloma Múltiplo/complicações
12.
J Bone Oncol ; 25: 100323, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33083217

RESUMO

OBJECTIVE: Monoclonal Gammopathy of Undetermined Significance (MGUS) is a risk factor for reduced physical performance, osteoporosis, and fractures due to compromised musculoskeletal metabolism. In this condition it is unknown whether whole-body vibration (WBV) exercise favorably alters physical performance and bone metabolism. METHODS: To evaluate the effect of three-months WBV exercise (30 min; 2x/week) including an optional three-month extension on physical performance, bone metabolism and bone mineral density. Endpoints included functional assessments, bone turnover markers and bone mineral density assessed by peripheral quantitative computed tomography of the tibia. RESULTS: Fifteen MGUS patients (median age 62.0, nine female) completed the first three months of which ten completed the three-month extension. Measures of physical functioning including chair rise test, timed up and go and 6-minute walk test improved (p = 0.007; p = 0.009; p = 0.005) after three and six months of WBV exercise. Total tibial bone mineral density remained unaltered (p > 0.05). WBV exercise tended to increase levels of sclerostin (p = 0.093) with a transient increase in osteoclast resorption markers (N-terminal telopeptide of collagen type 1, tartrate resistant acid phosphatase 5b) after three months while Dickkopf-1 (p = 0.093), procollagen I N-terminal propeptide (p = 0.074) and total alkaline phosphatase (p = 0.016) appeared to decline. No exercise-related adverse events were reported. CONCLUSION: WBV exercise in MGUS patients improves indicators of physical performance. Observed trends in bone turnover markers and changes in distal tibial bone mineral density may indicate a regulatory effect of WBV exercise on bone metabolism and warrants further evaluation by large scale studies.

13.
J Oncol ; 2020: 3985315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684931

RESUMO

Multiple myeloma (MM) bone disease is characterized by osteolytic bone tissue destruction resulting in bone pain, fractures, vertebral collapse, and spinal cord compression in patients. Upon initial diagnosis of MM, almost 80% of patients suffer from bone disease. Earlier diagnosis and intervention in MM bone disease would potentially improve treatment outcome and patient survival. New preclinical models are needed for developing novel diagnostic markers of bone structural changes as early as possible in the disease course. Here, we report a proof-of-concept, syngeneic, intrafemoral MOPC315.BM MM murine model in skeletally mature BALB/c mice for detection and characterization of very early changes in the extracellular matrix (ECM) of MM-injected animals. Bioluminescence imaging (BLI) in vivo confirmed myeloma engraftment in 100% of the animals with high osteoclast activity within 21 days after tumor cell inoculation. Early signs of aggressive bone turnover were observed on the outer bone surfaces by high-resolution microcomputed tomography (microCT). Synchrotron phase contrast-enhanced microcomputer tomography (PCE-CT) revealed very local microarchitecture differences highlighting numerous active sites of erosion and new bone at the micrometer scale. Correlative backscattered electron imaging (BSE) and confocal laser scanning microscopy allowed direct comparison of mineralized and nonmineralized matrix changes in the cortical bone. The osteocyte lacunar-canalicular network (OLCN) architecture was disorganized, and irregular-shaped osteocyte lacunae were observed in MM-injected bones after 21 days. Our model provides a potential platform to further evaluate pathological MM bone lesion development at the micro- and ultrastructural levels. These promising results make it possible to combine material science and pharmacological investigations that may improve early detection and treatment of MM bone disease.

15.
Dtsch Med Wochenschr ; 145(12): 836-842, 2020 06.
Artigo em Alemão | MEDLINE | ID: mdl-32557486

RESUMO

Lifestyle factors such as diet, physical activity and exposure to noxious agents are modifiable factors that have a significant impact on the state of health and life expectancy of humans. The following article is intended to provide an overview of current knowledge on the influence of these lifestyle factors on the development and progression of multiple myeloma and is dedicated to the question of the extent to which prevention strategies can be usefully applied.


Assuntos
Mieloma Múltiplo/prevenção & controle , Dieta , Humanos , Estilo de Vida , Prevenção Primária , Prevenção Secundária
16.
Biomolecules ; 10(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164381

RESUMO

Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.


Assuntos
Osso e Ossos/metabolismo , Matriz Extracelular/metabolismo , Mecanotransdução Celular , Músculo Esquelético/metabolismo , Osteoporose/metabolismo , Sarcopenia/metabolismo , Osso e Ossos/patologia , Exercício Físico , Matriz Extracelular/patologia , Humanos , Músculo Esquelético/patologia , Osteoporose/patologia , Osteoporose/terapia , Sarcopenia/patologia , Sarcopenia/terapia
17.
Stem Cells Int ; 2019: 5150634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936923

RESUMO

Skeletal development and remodeling of adult bone are critically controlled by activated NOTCH signaling in genetically modified mice. It is yet unclear whether NOTCH signaling is activated by mechanical strain sensed by bone cells. We found that expression of specific NOTCH target genes is induced after in vivo tibial mechanical loading in wild-type mice. We further applied mechanical strain through cyclic stretching in human bone marrow-derived mesenchymal stromal cells (BMSCs) in vitro by using a bioreactor system and detected upregulation of NOTCH target gene expression. Inhibition of the NOTCH pathway in primary BMSCs as well as telomerase-immortalized human BMSCs (hMSC-TERT) through the gamma-secretase inhibitor GSI XII blocked mechanotransduction and modulated actin cytoskeleton organization. Short-hairpin RNA gene silencing identified NOTCH2 as the key receptor mediating NOTCH effects on hMSC-TERT cells. Our data indicate a functional link between NOTCH activation and mechanotransduction in human BMSCs. We suggest that NOTCH signaling is an important contributor to molecular mechanisms that mediate the bone formation response to mechanical strain.

18.
Biomacromolecules ; 20(2): 916-926, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30571914

RESUMO

Multiple myeloma is a common plasma-cell-derived hematologic neoplasm. While the delivery of growth-inhibiting miRNA to multiple myeloma cells would be a promising strategy to evaluate treatment options, most multiple myeloma cells are transfection-resistant with established methods. Nonviral nanoparticulate transfection systems are particularly promising in this context, but so far struggle with transfection and knockdown efficiency. Here, we present poly(glycidol)-based nanogels with covalently bound cell-penetrating peptide TAT (transactivator of transcription from HIV). TAT facilitated a varying internalization efficiency of the nanogels depending on the cell line. The positively charged peptide also served as complexation agent for miRNA and enabled covalent binding of the TAT/miR-34a complex in the nanogels. These TAT/miRNA-loaded nanogels delivered and released miR-34a with high efficiency into OPM-2 multiple myeloma cells that are known as transfection-resistant. Delivery resulted in efficient downregulation of known target genes such as Notch1, Hey1, Hes6, and Hes1. Thus, these nanogel constructs offer a new tool to enhance gene delivery into multiple myeloma cells with immediate value in cancer research.


Assuntos
Regulação para Baixo/efeitos dos fármacos , MicroRNAs/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Nanogéis/química , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , MicroRNAs/química , Nanopartículas/química , Propilenoglicóis/química , Transfecção/métodos
19.
Leuk Lymphoma ; 56(7): 2105-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25363400

RESUMO

A better understanding of events triggering chronic myeloid leukemia progression is critical for optimized clinical management of chronic myeloid leukemia (CML). We sought to validate that increased expression of Musashi 2 (MSI2), a post-transcription regulator, is associated with progression and prognosis. Screening of 152 patients with CML showed that MSI2 was significantly decreased among patients with CML in chronic phase (CP) at diagnosis (p < 0.0001), but found no significant difference between the normal control group and treated patients with CML in CP. Moreover MSI2 was significantly increased (p < 0.0001) in patients with advance disease (AD) CML. Furthermore, our human hematopoietic cell line data imply that MSI2 and BCR-ABL1 mRNA expression are correlated. However, these data cast a doubt on earlier reports that MSI2 effects HES1 expression via NUMB-NOTCH signaling.


Assuntos
Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide de Fase Crônica/metabolismo , Leucemia Mieloide de Fase Crônica/patologia , Proteínas de Ligação a RNA/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Progressão da Doença , Feminino , Seguimentos , Proteínas de Fusão bcr-abl/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Técnicas Imunoenzimáticas , Leucemia Mieloide de Fase Crônica/genética , Leucemia Mieloide de Fase Crônica/mortalidade , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Taxa de Sobrevida , Regulação para Cima , Adulto Jovem
20.
PLoS One ; 9(10): e109018, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25272036

RESUMO

Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma.


Assuntos
Medula Óssea/patologia , Proliferação de Células , Eosinófilos/citologia , Megacariócitos/citologia , Mieloma Múltiplo/patologia , Animais , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA