Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancer Lett ; 579: 216456, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37940067

RESUMO

Pancreatic cancer remains one of the deadliest cancers with extremely high mortality rate, and the number of cases is expected to steadily increase with time. Pancreatic cancer is refractory to conventional cancer treatment options, like chemotherapy and radiotherapy, and commercialized immunotherapeutics, owing to its immunosuppressive and desmoplastic phenotype. Due to these reasons, development of an innovative treatment option that can overcome these challenges posed by the pancreatic tumor microenvironment (TME) is in an urgent need. The present review aims to summarize the evolution of oncolytic adenovirus (oAd) engineering and usage as therapeutics (either monotherapy or combination therapy) over the last decade to overcome these hurdles to instigate a potent antitumor effect against desmoplastic and immunosuppressive pancreatic cancer.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Vírus Oncolíticos/genética , Adenoviridae/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
2.
ACS Biomater Sci Eng ; 8(12): 5188-5198, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36449494

RESUMO

Even though chemotherapy regimens for treating cancer by inducing apoptosis are extensively utilized, their therapeutic effect is hindered by multiple limitations. Thus, a combination of other types of anticancer modalities is urgently needed. Herein, a tannic acid (TA)-Fe3+-coated doxorubicin (DOX)-encapsulated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (ammonium salt) (DSPE-PEG) micelle (TFDD) for apoptosis/ferroptosis-mediated immunogenic cell death (ICD) is reported. By coating TA-Fe3+ on the surface of DOX-loaded micelles, an apoptotic agent and a ferroptotic agent are simultaneously delivered into the cancer cells and induce cell death. Furthermore, the intracellular oxidative environment generated by the apoptosis/ferroptosis hybrid pathway stimulates the endoplasmic reticulum (ER) and leads to ICD induction. The in vivo results show that the combination treatment of TFDD and anti-programmed death-ligand 1 antibodies (anti-PD-L1) considerably inhibits tumor growth and improves antitumor immunity by activating CD4+ and CD8+ T cells and decreasing the ratio of regulatory T cells (Treg) to CD4+ T cells. This study suggests that the apoptosis/ferroptosis-mediated ICD inducer may offer a potent strategy for enhanced cancer immunotherapy.


Assuntos
Morte Celular Imunogênica , Neoplasias , Linfócitos T CD8-Positivos , Antígeno B7-H1 , Apoptose , Doxorrubicina/farmacologia , Micelas , Neoplasias/tratamento farmacológico
3.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806132

RESUMO

Cancer is a multifactorial and deadly disease. Despite major advancements in cancer therapy in the last two decades, cancer incidence is on the rise and disease prognosis still remains poor. Furthermore, molecular mechanisms of cancer invasiveness, metastasis, and drug resistance remain largely elusive. Targeted cancer therapy involving the silencing of specific cancer-enriched proteins by small interfering RNA (siRNA) offers a powerful tool. However, its application in clinic is limited by the short half-life of siRNA and warrants the development of efficient and stable siRNA delivery systems. Oncolytic adenovirus-mediated therapy offers an attractive alternative to the chemical drugs that often suffer from innate and acquired drug resistance. In continuation to our reports on the development of oncolytic adenovirus-mediated delivery of shRNA, we report here the replication-incompetent (dAd/shErbB3) and replication-competent (oAd/shErbB3) oncolytic adenovirus systems that caused efficient and persistent targeting of ErbB3. We demonstrate that the E1A coded by oAd/shErbB, in contrast to dAd/shErbB, caused downregulation of ErbB2 and ErbB3, yielding stronger downregulation of the ErbB3-oncogenic signaling axis in in vitro models of lung and breast cancer. These results were validated by in vivo antitumor efficacy of dAd/shErbB3 and oAd/shErbB3.


Assuntos
Neoplasias da Mama , Terapia Viral Oncolítica , Vírus Oncolíticos , Adenoviridae/fisiologia , Apoptose/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Vetores Genéticos , Humanos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , RNA Interferente Pequeno/genética , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Gene Ther ; 29(6): 825-834, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34349241

RESUMO

BACKGROUND: While immune checkpoint inhibitors are becoming a standard of care for multiple types of cancer, the majority of patients do not respond to this form of immunotherapy. New approaches are required to overcome resistance to immunotherapies. METHODS: We investigated the effects of adenoviral p53 (Ad-p53) gene therapy in combination with immune checkpoint inhibitors and selective IL2 or IL15 CD122/132 agonists in the aggressive B16F10 tumor model resistant to immunotherapies. To assess potential mechanisms of action, pre- and post- Ad-p53 treatment biopsies were evaluated for changes in gene-expression profiles by Nanostring IO 360 assays. RESULTS: The substantial synergy of "triplet" Ad-p53 + CD122/132 + anti-PD-1 therapy resulted in potential curative effects associated with the complete tumor remissions of both the primary and contralateral tumors. Interestingly, contralateral tumors, which were not injected with Ad-p53 showed robust abscopal effects resulting in statistically significant decreases in tumor size and increased survival (p < 0.001). None of the monotherapies or doublet treatments induced the complete tumor regressions. Ad-p53 treatment increased interferon, CD8+ T cell, immuno-proteosome antigen presentation, and tumor inflammation gene signatures. Ad-p53 treatment also decreased immune-suppressive TGF-beta, beta-catenin, macrophage, and endothelium gene signatures, which may contribute to enhanced immune checkpoint inhibitor (CPI) efficacy. Unexpectedly, a number of previously unidentified, strongly p53 downregulated genes associated with stromal pathways and IL10 expression identified novel anticancer therapeutic applications. CONCLUSIONS: These results imply the ability of Ad-p53 to induce efficacious local and systemic antitumor immune responses with the potential to reverse resistance to immune checkpoint inhibitor therapy when combined with CD122/132 agonists and immune checkpoint blockade. Our findings further imply that Ad-p53 has multiple complementary immune mechanisms of action, which support future clinical evaluation of triplet Ad-p53, CD122/132 agonist, and immune checkpoint inhibitor combination treatment.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Terapia Genética , Humanos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
5.
Adv Sci (Weinh) ; 8(7): 2001308, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854870

RESUMO

Immunogenic cell death (ICD) is distinguished by the release of tumor-associated antigens (TAAs) and danger-associated molecular patterns (DAMPs). This cell death has been studied in the field of cancer immunotherapy due to the ability of ICD to induce antitumor immunity. Herein, endoplasmic reticulum (ER) stress-mediated ICD inducing fluorinated mitochondria-disrupting helical polypeptides (MDHPs) are reported. The fluorination of the polypeptide provides a high helical structure and potent anticancer ability. This helical polypeptide destabilizes the mitochondrial outer membrane, leading to the overproduction of intracellular reactive oxygen species (ROS) and apoptosis. In addition, this oxidative stress triggers ER stress-mediated ICD. The in vivo results show that cotreatment of fluorinated MDHP and antiprogrammed death-ligand 1 antibodies (αPD-L1) significantly regresses tumor growth and prevents metastasis to the lungs by activating the cytotoxic T cell response and alleviating the immunosuppressive tumor microenvironment. These results indicate that fluorinated MDHP synergizes with the immune checkpoint blockade therapy to eliminate established tumors and to elicit antitumor immune responses.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Halogenação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Citotóxicos/efeitos dos fármacos
6.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32753544

RESUMO

BACKGROUND: Currently, several antibody (Ab)-based therapies have shown excellent therapeutic effects in the clinic. Nonetheless, Ab penetration into tumor tissues is limited due to abnormal vasculature, tumor interstitial pressure, and excessive extracellular matrix (ECM) accumulation, thus demanding novel strategies to overcome these barriers. METHODS: The intratumoral distribution of therapeutic Abs were detected by fluorescence microscopy or positron emission tomography in both human gastric xenograft and syngeneic pancreatic hamster tumor models. The antitumor efficacy by combination of oncolytic adenovirus (Ad), which coexpresses relaxin (RLX), interleukin (IL)-12, and granulocyte macrophage colony-stimulating factor (GM-CSF) (oAd/IL12/GM-RLX) and antibody against the programmed cell death protein 1 (αPD-1) was examined in hamster subcutaneous and orthotopic pancreatic tumor models. The immunological aspects of these combination therapy regimen were assessed by flow cytometry or immunohistochemistry in subcutaneous hamster tumor models. RESULTS: Relaxin-expressing oncolytic Ad effectively degraded tumor ECM and enhanced the tumor penetration of trastuzumab in comparison with trastuzumab monotherapy. Based on these results, an oAd/IL12/GM-RLX was used to enhance the potency of immune checkpoint blockade. The combination of the oAd/IL12/GM-RLX and αPD-1 promoted a concomitant degradation of the tumor ECM and amelioration of the immunosuppressive tumor niches, ultimately enhanced intratumoral infiltration of both αPD-1 and activated T cells. Of note, the combination therapy was able to elicit a potent and durable antitumor immune response against cold tumors that were refractory to immune checkpoint inhibitor monotherapy. CONCLUSIONS: Our findings are the first to demonstrate that expression of four genes (IL-12p35, IL-12p40, GM-CSF, and RLX) mediated by a single oncolytic Ad vector can promote remodeling of both physical and immunological aspects of the tumor niches to overcome the major limitations of Ab-based therapies that have emerged in recent clinical trials.


Assuntos
Adenoviridae/genética , Terapia Viral Oncolítica/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Relaxina/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Relaxina/farmacologia
7.
Mol Ther ; 28(10): 2286-2296, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32682455

RESUMO

CRISPR-Cas12a represents a class 2/type V CRISPR RNA-guided endonuclease, holding promise as a precise genome-editing tool in vitro and in vivo. For efficient delivery of the CRISPR-Cas system into cancer, oncolytic adenovirus (oAd) has been recognized as a promising alternative vehicle to conventional cancer therapy, owing to its cancer specificity; however, to our knowledge, it has not been used for genome editing. In this study, we show that CRISPR-Cas12a mediated by oAd disrupts the oncogenic signaling pathway with excellent cancer specificity. The intratumoral delivery of a single oAd co-expressing a Cas12a and a CRISPR RNA (crRNA) targeting the epidermal growth factor receptor (EGFR) gene (oAd/Cas12a/crEGFR) induces efficient and precise editing of the targeted EGFR gene in a cancer-specific manner, without detectable off-target nuclease activity. Importantly, oAd/Cas12a/crEGFR elicits a potent antitumor effect via robust induction of apoptosis and inhibition of tumor cell proliferation, ultimately leading to complete tumor regression in a subset of treated mice. Collectively, in this study we show precise genomic reprogramming via a single oAd vector-mediated CRISPR-Cas system and the feasibility of such system as an alternative cancer therapy.


Assuntos
Sistemas CRISPR-Cas , Receptores ErbB/genética , Edição de Genes , Vetores Genéticos/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , RNA Guia de Cinetoplastídeos/genética , Humanos , Neoplasias/genética , Neoplasias/terapia
8.
Adv Mater ; 32(1): e1903878, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31686433

RESUMO

Chirality is ubiquitous in nature and hard-wired into every biological system. Despite the prevalence of chirality in biological systems, controlling biomaterial chirality to influence interactions with cells has only recently been explored. Chiral-engineered supraparticles (SPs) that interact differentially with cells and proteins depending on their handedness are presented. SPs coordinated with d-chirality demonstrate greater than threefold enhanced cell membrane penetration in breast, cervical, and multiple myeloma cancer cells. Quartz crystal microbalance with dissipation and isothermal titration calorimetry measurements reveal the mechanism of these chiral-specific interactions. Thermodynamically, d-SPs show more stable adhesion to lipid layers composed of phospholipids and cholesterol compared to l-SPs. In vivo, d-SPs exhibit superior stability and longer biological half-lives likely due to opposite chirality and thus protection from endogenous proteins including proteases. This work shows that incorporating d-chirality into nanosystems enhances uptake by cancer cells and prolonged in vivo stability in circulation, providing support for the importance of chirality in biomaterials. Thus, chiral nanosystems may have the potential to provide a new level of control for drug delivery systems, tumor detection markers, biosensors, and other biomaterial-based devices.


Assuntos
Materiais Biocompatíveis/química , Nanomedicina , Materiais Biocompatíveis/farmacologia , Técnicas Biossensoriais/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Meia-Vida , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Microscopia Confocal , Polietilenoglicóis/química , Técnicas de Microbalança de Cristal de Quartzo , Estereoisomerismo , Termodinâmica
9.
Biomater Sci ; 7(10): 4195-4207, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31386700

RESUMO

A dual pH- and temperature-responsive physically crosslinked and injectable hydrogel system was developed for efficient and long-term delivery of oncolytic adenoviruses (Ads). Three different types of physically crosslinked hydrogels with different chemical compositions and properties were prepared. These hydrogels with good biocompatibility can be injected at pH 9.0 and room temperature and rapidly form a gel under body or tumor microenvironment conditions. Ads encapsulated in hydrogels were released gradually without burst release. Moreover, these physically crosslinked hydrogels provided a protective environment for Ads and maintained their bioactivity for a long period of time. Compared to naked Ads, Ads protected by these physically crosslinked hydrogels showed strong cytotoxicity to cancer cells even after 11 days. The Ad-loaded hydrogel system also exhibited enhanced and long-term antitumor therapeutic effects in human xenograft tumor models. Due to these outstanding properties, Ad-loaded injectable hydrogels might have potential for long-term cancer treatment.


Assuntos
Adenoviridae , Hidrogéis/administração & dosagem , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogéis/química , Injeções , Masculino , Camundongos Nus , Neoplasias/patologia , Neoplasias/terapia , Poliuretanos/administração & dosagem , Poliuretanos/química , Sulfametazina/administração & dosagem , Sulfametazina/química , Carga Tumoral
10.
Cancer Lett ; 459: 15-29, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150821

RESUMO

Pancreatic cancer is a highly lethal disease. Excessive accumulation of tumor extracellular matrix (ECM) and epithelial-to-mesenchymal transition (EMT) phenotype are two main contributors to drug resistance in desmoplastic pancreatic tumors. To overcome desmoplasia and chemoresistance of pancreatic cancer, we utilized an oncolytic adenovirus (Ad) co-expressing decorin and soluble Wnt decoy receptor (HEmT-DCN/sLRP6). An orthotopic pancreatic xenograft tumor model was established in athymic nude mice using Mia PaCa-2 cells, and the antimetastatic and antitumor efficacy of systemically administered HEmT-DCN/sLRP6 was evaluated. Immunohistochemical analysis of tumor tissues was performed to assess ECM degradation, induction of apoptosis, viral dispersion, and inhibition of the Wnt/ß-catenin signaling pathway. HEmT-DCN/sLRP6 effectively degraded tumor ECM and inhibited EMT, leading to enhanced viral distribution, induction of apoptosis, and attenuation of tumor cell proliferation in tumor tissue. HEmT-DCN/sLRP6 prevented metastasis of pancreatic cancer. Importantly, HEmT-DCN/sLRP6 sensitized pancreatic tumor to gemcitabine treatment. Furthermore, HEmT-DCN/sLRP6 augmented drug penetration and dispersion within pancreatic tumor xenografts and patient-derived tumor spheroids. Collectively, these results illustrate that HEmT-DCN/sLRP6 can enhance the dispersion of both oncolytic Ad and a chemotherapeutic agent in chemoresistant and desmoplastic pancreatic tumor, effectively overcoming the preexisting limitations of standard treatments.


Assuntos
Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/virologia , Células A549 , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Animais , Linhagem Celular Tumoral , Decorina/biossíntese , Decorina/genética , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Distribuição Aleatória , Receptores Wnt/antagonistas & inibidores , Receptores Wnt/metabolismo , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biomaterials ; 147: 26-38, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28923683

RESUMO

Currently, intratumoral injection of an oncolytic adenovirus (Ad) is the conventional administration route in clinical trials. Nonetheless, the locally administered Ad disseminates to the surrounding nontarget tissues and has short biological activity due to immunogenicity of Ad, thus necessitating multiple injections to achieve a sufficient therapeutic index. In the present study, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-expressing oncolytic Ad (oAd-TRAIL) was encapsulated in a gelatin hydrogel (oAd-TRAIL/gel) to enhance and prolong antitumor efficacy of the virus after a single intratumoral injection. oAd-TRAIL/gel showed greater antitumor efficacy than naked oAd-TRAIL did due to enhanced and prolonged intratumoral accumulation of Ad up to a 20-day period, showing potent induction of apoptosis and inhibition of tumor cell proliferation. Furthermore, the gel system effectively prevented shedding of oncolytic Ad from the injection site to hepatic and other healthy tissues. oAd-TRAIL/gel treatment resulted in a markedly weaker antiviral immune response against Ad relative to naked oAd-TRAIL, further contributing to prolonged persistence of the oncolytic Ad in tumor tissue. Moreover, the hydrogel matrix preserved oAd-TRAIL's ability to induce an antitumor immune response, resulting in higher intratumoral infiltration by CD4+/CD8+ T cells. Taken together, these findings show that single intratumoral administration of the Ad/hydrogel modality may prolong and potentiate the therapeutic efficacy of Ad, modulate the immune reaction in favor of the virotherapy, and enhance intratumoral localization of the virus, ultimately overcoming limitations of oncolytic virotherapy revealed in recent clinical trials.


Assuntos
Adenoviridae/genética , Gelatina/química , Hidrogéis/química , Vírus Oncolíticos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Adenoviridae/imunologia , Animais , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Cricetinae , Humanos , Imunidade Ativa , Injeções Intralesionais , Mesocricetus , Transplante de Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Eliminação de Partículas Virais
12.
ACS Nano ; 10(11): 10533-10543, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27805805

RESUMO

Oncolytic adenovirus (Ad) is a promising candidate for cancer gene therapy. However, as a monotherapy, it has shown insufficient therapeutic efficacy in clinical trials. In this work, we demonstrate that gold nanorod (GNR)-mediated mild hyperthermia enhances the cellular uptake and consequent gene expression of oncolytic Ad to head and neck tumor cells. We examined the combination of oncolytic Ad expressing vascular endothelial growth factor promoter-targeted artificial transcriptional repressor zinc-finger protein and GNR-mediated mild hyperthermia to improve antitumor effects. The in vitro mechanisms of increased transduction in the presence and absence of hyperthermia were explored followed by evaluation of efficacy of this combination strategy in an animal model. Exposure to optimized hyperthermia conditions improved endocytosis of oncolytic Ad, transgene expression, viral replication, and subsequent cytolysis of head and neck cancer cells. GNR-mediated plasmonic photothermal therapy resulted in precise control of tumor temperature and induction of mild hyperthermia. A combination of oncolytic Ad and GNRs resulted in potent tumor growth inhibition of head and neck tumors.


Assuntos
Ouro , Hipertermia Induzida , Nanotubos , Fototerapia , Adenoviridae , Animais , Linhagem Celular Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Exp Clin Cancer Res ; 35: 74, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154307

RESUMO

BACKGROUND: Gene-based virotherapy mediated by oncolytic viruses is currently experiencing a renaissance in cancer therapy. However, relatively little attention has been given to the potentiality of dual gene virotherapy strategy as a novel therapeutic approach to mediate triplex anticancer combination effects, particularly if the two suitable genes are well chosen. Both tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interleukin-12 (IL-12) have been emerged as promising pharmacological candidates in cancer therapy; however, the combined efficacy of TRAIL and IL-12 genes for treatment of human hepatocellular carcinoma (HCC) remains to be determined. METHODS: Herein, we investigated the therapeutic efficacy of concurrent therapy with two armed oncolytic adenoviruses encoding human TRAIL gene (Ad-ΔB/TRAIL) and IL-12 gene (Ad-ΔB/IL-12), respectively, on preclinical models of human HCC, and also elucidated the possible underlying mechanisms. The effects of Ad-ΔB/TRAIL+Ad-ΔB/IL-12 combination therapy were assessed both in vitro on Hep3B and HuH7 human HCC cell lines and in vivo on HCC-orthotopic model established in the livers of athymic nude mice by intrahepatic implantation of human Hep3B cells. RESULTS: Compared to therapy with non-armed control Ad-ΔB, combined therapy with Ad-ΔB/TRAIL+Ad-ΔB/IL-12 elicited profound anti-HCC killing effects on Hep3B and HuH7 cells and on the transplanted Hep3B-orthotopic model. Efficient viral replication and TRAIL and IL-12 expression were also confirmed in HCC cells and the harvested tumor tissues treated with this combination therapy. Mechanistically, co-therapy with Ad-ΔB/TRAIL+Ad-ΔB/IL-12 exhibited an enhanced effect on apoptosis promotion, activation of caspase-3 and-8, generation of anti-tumor immune response evidenced by upregulation of interferon gamma (IFN-γ) production and infiltration of natural killer-and antigen presenting cells, and remarkable repression of intratumor vascular endothelial growth factor (VEGF) and cluster of differentiation 31 (CD31) expression and tumor microvessel density. CONCLUSIONS: Overall, our data showed a favorable therapeutic effect of Ad-ΔB/TRAIL+Ad-ΔB/IL-12 combination therapy against human HCC, and may therefore constitute a promising and effective therapeutic strategy for treating human HCC. However, further studies are warranted for its reliable clinical translation.


Assuntos
Adenoviridae/genética , Carcinoma Hepatocelular/terapia , Interleucina-2/genética , Neoplasias Hepáticas/terapia , Terapia Viral Oncolítica/métodos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Vírus Oncolíticos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA