Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med Rep ; 6(1): 157-62, 2012 07.
Artigo em Inglês | MEDLINE | ID: mdl-22576741

RESUMO

The phosphorylation changes of nociceptive signaling proteins in the spinal cord dorsal horn (SCDH) are important in creating exaggerated pain following peripheral inflammation. Electroacupuncture (EA) has been widely used to relieve acute and chronic inflammatory pain in human and experimental pain models. In the present study, we performed a phosphoproteomic analysis to investigate whether EA alters protein phosphorylation in SCDH to attenuate pain development. Inflammatory hyperalgesia was induced by intraplantar injection of complete Freund's adjuvant (CFA) into the rat hind paw. EA treatment at ST36 and SP6 acupoints alleviated thermal hyperalgesia of the CFA-induced inflammatory pain model rats. The SCDH proteins from the control, inflammatory pain model and EA treatment rats were separated by 2-dimensional gel electrophoresis and the alterations in phosphoproteins were detected by Pro-Q Diamond staining. Eight proteins were differentially phosphorylated following EA treatment in the inflammatory pain model. Aldolase C, nascent polypeptide-associated complex α, stress-induced phosphoprotein 1 and heat shock protein 90 were identified as phosphoproteins whose expression was increased, whereas GDP dissociation inhibitor 1, thiamine triphosphatase, phosphoglycerate kinase 1 and 14-3-3 γ were phosphoproteins whose expression was decreased. This is the first phosphoproteomic screening study to elucidate the working mechanisms of EA analgesia. The results suggest that the regulation of cellular pathways in which the identified proteins are involved may be associated with an EA analgesic mechanism.


Assuntos
Analgesia , Eletroacupuntura , Dor/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Animais , Modelos Animais de Doenças , Adjuvante de Freund/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/terapia , Masculino , Dor/induzido quimicamente , Manejo da Dor , Células do Corno Posterior/metabolismo , Proteômica , Ratos , Ratos Sprague-Dawley
2.
Anal Chem ; 82(24): 10090-4, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21073163

RESUMO

The application of intense ultrasound to a liquid-gas interface results in the formation of an ultrasonic fountain and generates both mist and vapor from the liquid. Here, the composition of the vapor and aerosol above an ultrasonic fountain is determined as a function of irradiation time and compared with the results of sparging for five different solutions. The experimental apparatus for determining the efficiency of separation consists of a glass vessel containing a piezoelectric transducer driven at either 1.65 or 2.40 MHz. Dry nitrogen is passed over the ultrasonic fountain to remove the vapor and aerosol. The composition of the liquid solutions are recorded as a function of irradiation time using gas chromatography, refractive index measurement, nuclear magnetic resonance, or spectrophotometry. Data are presented for ethanol-water and ethyl acetate-ethanol solutions, cobalt chloride in water, colloidal silica, and colloidal gold. The experiments show that ultrasonic distillation produces separations that are somewhat less complete than what is obtained using sparging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA