Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
bioRxiv ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39131310

RESUMO

Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways in which inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that mice in which IPMK knockout is deleted, specifically in the skeletal muscle, displayed an increased body weight, disrupted glucose tolerance, and reduced exercise tolerance under the normal diet. Moreover, these changes were associated with an increased accumulation of triglyceride in skeletal muscle. Furthermore, we have confirmed that a loss of IPMK led to reduced beta-oxidation, increased triglyceride accumulation, and impaired insulin response in IPMK-deficient muscle cells. Thus, our results suggest that IPMK mediates the whole-body metabolism via regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.

2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338668

RESUMO

Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Colina/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Fígado/metabolismo , Racemetionina/metabolismo , Dieta , Inflamação/metabolismo , Quimiocinas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Proc Natl Acad Sci U S A ; 121(2): e2306682120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38181056

RESUMO

α-Synuclein is an important drug target for the treatment of Parkinson's disease (PD), but it is an intrinsically disordered protein lacking typical small-molecule binding pockets. In contrast, the encoding SNCA mRNA has regions of ordered structure in its 5' untranslated region (UTR). Here, we present an integrated approach to identify small molecules that bind this structured region and inhibit α-synuclein translation. A drug-like, RNA-focused compound collection was studied for binding to the 5' UTR of SNCA mRNA, affording Synucleozid-2.0, a drug-like small molecule that decreases α-synuclein levels by inhibiting ribosomes from assembling onto SNCA mRNA. This RNA-binding small molecule was converted into a ribonuclease-targeting chimera (RiboTAC) to degrade cellular SNCA mRNA. RNA-seq and proteomics studies demonstrated that the RiboTAC (Syn-RiboTAC) selectively degraded SNCA mRNA to reduce its protein levels, affording a fivefold enhancement of cytoprotective effects as compared to Synucleozid-2.0. As observed in many diseases, transcriptome-wide changes in RNA expression are observed in PD. Syn-RiboTAC also rescued the expression of ~50% of genes that were abnormally expressed in dopaminergic neurons differentiated from PD patient-derived iPSCs. These studies demonstrate that the druggability of the proteome can be expanded greatly by targeting the encoding mRNAs with both small molecule binders and RiboTAC degraders.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , RNA Mensageiro/genética , Proteínas Intrinsicamente Desordenadas/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Regiões 5' não Traduzidas , Ribonucleases
4.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014152

RESUMO

Non-Alcoholic Steatohepatitis (NASH) is an inflammatory form of Non-Alcoholic Fatty Liver Disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes, however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine and choline deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.

5.
J Cell Biochem ; 124(11): 1695-1704, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795573

RESUMO

Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Insulina/farmacologia , Hepatócitos/metabolismo
6.
iScience ; 26(7): 107199, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456841

RESUMO

Maintenance of redox balance plays central roles in a plethora of signaling processes. Although physiological levels of reactive oxygen and nitrogen species are crucial for functioning of certain signaling pathways, excessive production of free radicals and oxidants can damage cell components. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling cascade is the key pathway that mediates cellular response to oxidative stress. It is controlled at multiple levels, which serve to maintain redox homeostasis within cells. We show here that inositol polyphosphate multikinase (IPMK) is a modulator of Nrf2 signaling. IPMK binds Nrf2 and attenuates activation and expression of Nrf2 target genes. Furthermore, depletion of IPMK leads to elevated glutathione and cysteine levels, resulting in increased resistance to oxidants. Accordingly, targeting IPMK may restore redox balance under conditions of cysteine and glutathione insufficiency.

7.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162825

RESUMO

Insulin resistance is a critical mediator of the development of non-alcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of non-alcoholic fatty liver disease (NAFLD). Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of Akt phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-Acetyl Cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.

8.
J Cell Physiol ; 237(8): 3421-3432, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35822903

RESUMO

Hepatic glucose production (HGP) is crucial for the maintenance of normal glucose homeostasis. Although hepatic insulin resistance contributes to excessive glucose production, its mechanism is not well understood. Here, we show that inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate biosynthesis, plays a role in regulating hepatic insulin signaling and gluconeogenesis both in vitro and in vivo. IPMK-deficient hepatocytes exhibit decreased insulin-induced activation of Akt-FoxO1 signaling. The expression of messenger RNA levels of phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose 6-phosphatase (G6pc), key enzymes mediating gluconeogenesis, are increased in IPMK-deficient hepatocytes compared to wild type hepatocytes. Importantly, re-expressing IPMK restores insulin sensitivity and alleviates glucose production in IPMK-deficient hepatocytes. Moreover, hepatocyte-specific IPMK deletion exacerbates hyperglycemia and insulin sensitivity in mice fed a high-fat diet, accompanied by an increase in HGP during pyruvate tolerance test and reduction in Akt phosphorylation in IPMK deficient liver. Our results demonstrate that IPMK mediates insulin signaling and gluconeogenesis and may be potentially targeted for treatment of diabetes.


Assuntos
Glucose , Resistência à Insulina , Insulina , Fígado , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Camundongos , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
J Infect Dis ; 226(9): 1626-1636, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512127

RESUMO

BACKGROUND: Antiretroviral therapy (ART) containing integrase strand transfer inhibitors (INSTIs) has been associated with weight gain in both ART initiation and switch studies, especially in women, but the underlying mechanisms are unclear. METHODS: The effects of dolutegravir (DTG) on food intake, energy expenditure, oxygen consumption in female mice, and gene expression from adipose tissues were assessed. Human and murine preadipocytes were treated with DTG either during differentiation into mature brown/beige adipocytes or postdifferentiation. Lipid accumulation, lipolysis, ß-adrenergic response, adipogenic markers, mitochondrial respiration, and insulin response were analyzed. RESULTS: Two-week administration of DTG to female mice reduced energy expenditure, which was accompanied by decreased uncoupling protein 1 (UCP1) expression in brown/beige adipose tissues. In vitro studies showed that DTG significantly reduced brown adipogenic markers, especially UCP1 in brown and beige adipocytes, whereas drugs from other classes did not. Furthermore, a loss of UCP1 by DTG led to a decrease in mitochondrial complex IV component, followed by a reduction in mitochondrial respiratory capacity and reduced insulin-stimulated glucose uptake. CONCLUSIONS: Our findings show that DTG targets UCP1 and mitochondrial functions in brown and beige adipocytes and disrupts thermogenic functions in preclinical models, providing the potential mechanisms by which DTG suppresses energy expenditure leading to weight gain.


Assuntos
Adipócitos Bege , Insulinas , Feminino , Humanos , Camundongos , Animais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Adipócitos Bege/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Termogênese/genética , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Aumento de Peso , Insulinas/metabolismo
10.
Sci Rep ; 9(1): 17839, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780766

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is excessive fat build-up in the liver without alcohol consumption and includes hepatic inflammation and damage. Excessive influx of fatty acids to liver from circulation is thought to be a pathogenic cause for the development of NAFLD. Thus, inhibition of fatty acid intake into hepatocyte would be a maneuver for protection from high fat diet (HFD)-induced NAFLD. This study was initiated to determine whether sodium fluorocitrate (SFC) as a fatty acid uptake inhibitor could prevent palmitate-induced lipotoxicity in hepatocytes and protect the mice from HFD-induced NAFLD. SFC significantly inhibited the cellular uptake of palmitate in HepG2 hepatocytes, and thus prevented palmitate-induced fat accumulation and death in these cells. Single treatment with SFC reduced fasting-induced hepatic steatosis in C57BL/6J mice. Concurrent treatment with SFC for 15 weeks in HFD-fed C57BL/6J mice prevented HFD-induced fat accumulation and stress/inflammatory signal activation in the liver. SFC restored HFD-induced increased levels of serum alanine aminotransferase and aspartate aminotransferases as hepatic injury markers in these mice. SFC treatment also improved HFD-induced hepatic insulin resistance, and thus ameliorated HFD-induced hyperglycemia. In conclusion, inhibition of fatty acid mobilization into liver through SFC treatment can be a strategy to protect from HFD-induced NAFLD.


Assuntos
Citratos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ácido Palmítico/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Citratos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia
11.
Sci Rep ; 7(1): 12916, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018279

RESUMO

Beta cell loss and insulin resistance play roles in the pathogenesis of type 2 diabetes. Elevated levels of free fatty acids in plasma might contribute to the loss of beta cells. The objective of this study was to find a chemical that could protect against palmitate-induced beta cell death and investigate whether such chemical could improve hyperglycemia in mouse model of type 2 diabetes. Sodium fluorocitrate (SFC), an aconitase inhibitor, was found to be strongly and specifically protective against palmitate-induced INS-1 beta cell death. However, the protective effect of SFC on palmitate-induced cell death was not likely to be due to its inhibitory activity for aconitase since inhibition or knockdown of aconitase failed to protect against palmitate-induced cell death. Since SFC inhibited the uptake of palmitate into INS-1 cells, reduced metabolism of fatty acids was thought to be involved in SFC's protective effect. Ten weeks of treatment with SFC in db/db diabetic mice reduced glucose level but remarkably increased insulin level in the plasma. SFC improved impairment of glucose-stimulated insulin release and also reduced the loss of beta cells in db/db mice. Conclusively, SFC possessed protective effect against palmitate-induced lipotoxicity and improved hyperglycemia in mouse model of type 2 diabetes.


Assuntos
Citratos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Células Secretoras de Insulina/patologia , Palmitatos/toxicidade , Substâncias Protetoras/uso terapêutico , Aconitato Hidratase/antagonistas & inibidores , Aconitato Hidratase/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citratos/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hiperglicemia/complicações , Hiperglicemia/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Palmitatos/metabolismo , Substâncias Protetoras/farmacologia , Ratos
12.
Sci Rep ; 5: 37468, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874078

RESUMO

Individuals with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) induced by high calorie western diet are characterized by enhanced lipogenesis and gluconeogenesis in the liver. Stimulation of reductive amination may shift tricarboxylic acid cycle metabolism for lipogenesis and gluconeogenesis toward glutamate synthesis with increase of NAD+/NADH ratio and thus, ameliorate high calorie diet-induced fatty liver and hyperglycemia. Stimulation of reductive amination through glutamate dehydrogenase (GDH) activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reduced both de novo lipogenesis and gluconeogenesis but increased the activities of sirtuins and AMP-activated kinase in primary hepatocytes. Long-term BCH treatment improved most metabolic alterations induced by high fat/high fructose (HF/HFr) diet in C57BL/6J mice. BCH prevented HF/HFr-induced fat accumulation and activation of stress/inflammation signals such as phospho-JNK, phospho-PERK, phospho-p38, and phospho-NFκB in liver tissues. Furthermore, BCH treatment reduced the expression levels of inflammatory cytokines such as TNF-α and IL-1ß in HF/HFr-fed mouse liver. BCH also reduced liver collagen and plasma levels of alanine transaminase and aspartate transaminase. On the other hand, BCH significantly improved fasting hyperglycemia and glucose tolerance in HF/HFr-fed mice. In conclusion, stimulation of reductive amination through GDH activation can be used as a strategy to prevent high calorie western diet-induced NAFLD and T2D.


Assuntos
Aminoácidos Cíclicos/farmacologia , Gorduras na Dieta/efeitos adversos , Açúcares da Dieta/efeitos adversos , Ativadores de Enzimas/farmacologia , Fígado Gorduroso/prevenção & controle , Frutose/efeitos adversos , Glutamato Desidrogenase/metabolismo , Hiperglicemia/prevenção & controle , Aminação , Aminoácidos Cíclicos/administração & dosagem , Animais , Fígado Gorduroso/metabolismo , Hiperglicemia/metabolismo , Lipogênese , Masculino , Camundongos Endogâmicos C57BL
13.
Mol Cell Endocrinol ; 407: 74-84, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25779532

RESUMO

High levels of plasma free fatty acid are thought to contribute to the loss of pancreatic beta-cells in type 2 diabetes. In particular, saturated fatty acid such as palmitate or stearate can induce apoptosis in cultured beta cells (lipotoxicity). Endoplasmic reticulum stress is a critical mediator of free fatty acid-induced lipotoxicity. Recently, disorders in mitochondrial respiratory metabolism have been linked to lipotoxicity. Since iron is a critical component of respiratory metabolism, this study is initiated to determine whether abnormal iron metabolism is involved in palmitate-induced beta cell death. Immunoblotting analysis showed that treatment of INS-1 beta cells with palmitate reduced the level of transferrin receptor 1 (TfR1), but increased the level of heavy chain ferritin (FTH). In addition, palmitate reduced intracellular labile iron pool. Whereas iron depletion through treatment with iron-chelators deferoxamine or deferasirox augmented palmitate-induced cell death, iron supplementation with ferric chloride, ferrous sulfate, or holo-transferrin significantly protected cells against palmitate-induced death. Furthermore, overexpression of TfR1 reduced palmitate-induced cell death, whereas knockdown of TfR1 augmented cell death. In particular, treatment with deferoxamine increased the level of endoplasmic reticulum (ER) stress markers phospho-PERK, phospho-eIF2α, CHOP and phospho-c-Jun N-terminal kinase. Treatment with chemical chaperone significantly protected cells against deferoxamine-induced apoptosis. Iron supplementation also protected cells against palmitate-induced primary islet death. These data suggest that iron depletion plays an important role in palmitate-induced beta cell death through inducing ER stress. Therefore, attempts to block iron depletion might be able to prevent beta cell loss in type 2 diabetes.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Deficiências de Ferro , Ácido Palmítico/toxicidade , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Benzoatos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cloretos/farmacologia , Deferasirox , Desferroxamina/farmacologia , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Compostos Férricos/farmacologia , Compostos Ferrosos/farmacologia , Regulação da Expressão Gênica , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ratos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transferrina/farmacologia , Triazóis/farmacologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
14.
Mol Cell Endocrinol ; 383(1-2): 48-59, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24333689

RESUMO

This work was initiated to determine whether toxicity generated through inhibition of mitochondrial fuel metabolism is similar to high glucose/palmitate (HG/PA)-induced glucolipotoxicity. Influx of glucose and free fatty acids into the tricarboxylic acid (TCA) cycle was inhibited by treatment with the pyruvate carboxylase (PC) inhibitor phenylacetic acid (PAA) and carnitine palmitoyl transferase-1 (CPT-1) inhibitor etomoxir (Eto), or knockdown of PC and CPT-1. Treatment of PAA/Eto or knockdown of PC/CPT-1 induced apoptotic death in INS-1 beta cells. Similar to HG/PA treatment, PAA/Eto increased endoplasmic reticulum stress responses but decreased the Akt signal. JNK inhibitor or chemical chaperone was protective against both PAA/Eto- and HG/PA-induced cell death. All attempts to reduce [Ca²âº](i), stimulate lipid metabolism, and increase the TCA cycle intermediate pool protected PAA/Eto-induced death as well as HG/PA-induced death. These data suggest that signals induced from impaired mitochondrial fuel metabolism play a critical role in HG/PA-induced glucolipotoxicity.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Glucose/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Palmítico/toxicidade , Piruvato Carboxilase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Estresse do Retículo Endoplasmático/genética , Compostos de Epóxi/farmacologia , Regulação da Expressão Gênica , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenilacetatos/farmacologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais
15.
Arch Biochem Biophys ; 535(2): 187-96, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23562377

RESUMO

This study was initiated to determine whether the protective effect of nicotinamide (NAM) on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death was due to its role as an anti-oxidant, nicotinamide dinucleotide (NAD+) precursor, or inhibitor of NAD+-consuming enzymes such as poly (ADP-ribose) polymerase (PARP) or sirtuins. All anti-oxidants tested were not protective against HG/PA-induced INS-1 cell death. Direct supplementation of NAD+ or indirect supplementation through NAD+ salvage or de novo pathway did not protect the death. Knockdown of the NAD+ salvage pathway enzymes such as nicotinamide phosphoribosyl transferase (NAMPT) or nicotinamide mononucleotide adenyltransferase (NMNAT) did not augment death. On the other hand, pharmacological inhibition or knockdown of PARP did not affect death. However, sirtinol as an inhibitor of NAD-dependant deacetylase or knockdown of SIRT3 or SIRT4 significantly reduced the HG/PA-induced death. These data suggest that protective effect of NAM on beta cell glucolipotoxicity is attributed to its inhibitory activity on sirtuins.


Assuntos
Antioxidantes/farmacologia , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Niacinamida/farmacologia , Palmitatos/metabolismo , Sirtuínas/antagonistas & inibidores , Acetilcisteína/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Efrina-B2/metabolismo , Técnicas de Silenciamento de Genes , Glucose/toxicidade , Glutationa/farmacologia , Células Secretoras de Insulina/citologia , MAP Quinase Quinase 4/metabolismo , NAD/metabolismo , NAD/farmacologia , Palmitatos/toxicidade , Fosforilação , Poli Adenosina Difosfato Ribose/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Fator de Transcrição CHOP/metabolismo
16.
Eur J Pharmacol ; 696(1-3): 187-93, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23026370

RESUMO

Loss of beta cells is a pathogenic cause for the development of type 2 diabetes. High glucose/free fatty acid (HG/FFA)-induced glucolipotoxicity was thought to play a role in the beta cell loss. Thus, application of small molecules capable of preventing HG/FFA-induced glucolipotoxicty to beta cells could be an avenue for a therapeutic intervention for the development of type 2 diabetes. We screened a representative library supplied from Korean Chemical Bank for prevention of high glucose/palmitate (HG/PA)-induced viability reduction of INS-1 beta cells and were able to identify a new small molecule (DW1182v) with a function to protect HG/PA-induced glucolipotoxicity. The protective effect was specific to HG/PA-induced beta cell death since DW1182v did not protect streptozotocin- or cytokine-induced INS-1 cell death. The protective effect by DW1182v was likely due to the reduction of death-promoting endoplasmic reticulum (ER) stress responses such as phospho-C-Jun N-terminal kinase (JNK) and C/EBP homologous protein (CHOP). Treatment of obese diabetic db/db mice with DW1182v preserved islet integrity and thus increased insulin secretion and lowered blood glucose after glucose infusion. These results suggest that a small molecule protecting HG/PA-induced glucolipotoxicity to beta cells can be a new therapeutic candidate to prevent the development of type 2 diabetes.


Assuntos
Hipoglicemiantes/farmacologia , Indazóis/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Pirimidinas/farmacologia , Animais , Glicemia/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/farmacologia , Teste de Tolerância a Glucose , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hiperglicemia/patologia , Hipoglicemiantes/uso terapêutico , Indazóis/uso terapêutico , Insulina/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/patologia , Palmitatos/farmacologia , Pirimidinas/uso terapêutico
17.
Mol Cell Biochem ; 354(1-2): 207-17, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21503675

RESUMO

Fatty acid-induced cytotoxicity is believed to recapitulate lipotoxicity seen in obese type-2 diabetes, and, thus, contribute to beta cell loss in the disease. These studies were initiated to determine whether the Toll-like receptor (TLR) signaling pathway was involved in palmitate-induced beta cell death. Treatment of INS-1 beta cells with palmitate enhanced interaction between TLR and myeloid differentiation factor88 (MyD88). Concomitant with TLR/MyD88 interaction, the level of phospho-C-Jun N-terminal kinase (phospho-JNK) showed an increase; however, the level of inhibitory factor kappa B alpha (IκBα) showed a decrease. Gene knockdown of TLR4 prevented palmitate-induced INS-1 cell death, while knockdown of TLR2 did not. In addition, gene knockdown of TLR4 prevented palmitate-induced increase of phospho-JNK and decrease of IκBα. JNK inhibitor SP60125 significantly protected against palmitate-induced INS-1 cell death, while IκB kinase (IKK) inhibitor acetylsalicylate did not. These data suggest involvement of JNK activation through the TLR4 signaling pathway in palmitate-induced INS-1 beta cell death.


Assuntos
Apoptose , Células Secretoras de Insulina/efeitos dos fármacos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA , Ativação Enzimática , Proteínas I-kappa B/metabolismo , Imunoprecipitação , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopeptídeos/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Palmitatos , Fosfoproteínas/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Interferência de RNA , Ratos , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética
18.
Endocrinology ; 152(3): 816-27, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21209018

RESUMO

Saturated fatty acids are generally cytotoxic to ß-cells. Accumulation of lipid intermediates and subsequent activation of lipid-mediated signals has been suggested to play a role in fatty acid-induced toxicity. To determine the effects of lipid metabolism in fatty acid-induced toxicity, lipid metabolism was modulated by up- and down-regulation of a lipogenic or fatty acid oxidation pathway, and the effects of various modulators on palmitate (PA)-induced INS-1 ß-cell death were then evaluated. Treatment with the liver X receptor agonist T0901317 reduced PA-induced INS-1 cell death, regardless of its enhanced lipogenic activity. Furthermore, transient expression of a lipogenic transcription factor sterol regulatory element binding protein-1c (SREBP-1c) was also protective against PA-induced cytotoxicity. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 significantly augmented PA-induced cell death and reduced T0901317-induced protective effects. Conversely, T0901317 increased carnitine PA transferease-1 (CPT-1) expression and augmented PA oxidation. CPT-1 inhibitor etomoxir or CPT-1 knockdown augmented PA-induced cell death and reduced T0901317-induced protective effects, whereas the peroxisome proliferator-activated receptor (PPAR)-α agonist bezafibrate reduced PA-induced toxicity. In particular, T0901317 reduced the levels of PA-induced endoplasmic reticulum (ER) stress markers, including phospho-eukaryotic initiation factor-2α, phospho-C-Jun N terminal kinase, and CCAAT/enhancer-binding protein homologous protein. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 augmented PA-induced ER stress responses. Results of these experiments suggested that stimulation of lipid metabolism, including lipogenesis and fatty acid oxidation, protected ß-cells from PA-induced lipotoxicity and that protection through enhanced lipogenesis was likely due to reduced ER stress.


Assuntos
Ácidos Graxos/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Lipogênese/efeitos dos fármacos , Palmitatos/farmacologia , Animais , Células Cultivadas , Retículo Endoplasmático , Metabolismo dos Lipídeos , Receptores X do Fígado , Receptores Nucleares Órfãos/agonistas , Oxirredução , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA