Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 30: 100568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585372

RESUMO

Background and purpose: The [18]F-fluoroethyl-l-tyrosine (FET) PET in Glioblastoma (FIG) study is an Australian prospective, multi-centre trial evaluating FET PET for newly diagnosed glioblastoma management. The Radiation Oncology credentialing program aimed to assess the feasibility in Radiation Oncologist (RO) derivation of standard-of-care target volumes (TVMR) and hybrid target volumes (TVMR+FET) incorporating pre-defined FET PET biological tumour volumes (BTVs). Materials and methods: Central review and analysis of TVMR and TVMR+FET was undertaken across three benchmarking cases. BTVs were pre-defined by a sole nuclear medicine expert. Intraclass correlation coefficient (ICC) confidence intervals (CIs) evaluated volume agreement. RO contour spatial and boundary agreement were evaluated (Dice similarity coefficient [DSC], Jaccard index [JAC], overlap volume [OV], Hausdorff distance [HD] and mean absolute surface distance [MASD]). Dose plan generation (one case per site) was assessed. Results: Data from 19 ROs across 10 trial sites (54 initial submissions, 8 resubmissions requested, 4 conditional passes) was assessed with an initial pass rate of 77.8 %; all resubmissions passed. TVMR+FET were significantly larger than TVMR (p < 0.001) for all cases. RO gross tumour volume (GTV) agreement was moderate-to-excellent for GTVMR (ICC = 0.910; 95 % CI, 0.708-0.997) and good-to-excellent for GTVMR+FET (ICC = 0.965; 95 % CI, 0.871-0.999). GTVMR+FET showed greater spatial overlap and boundary agreement compared to GTVMR. For the clinical target volume (CTV), CTVMR+FET showed lower average boundary agreement versus CTVMR (MASD: 1.73 mm vs. 1.61 mm, p = 0.042). All sites passed the planning exercise. Conclusions: The credentialing program demonstrated feasibility in successful credentialing of 19 ROs across 10 sites, increasing national expertise in TVMR+FET delineation.

2.
Front Immunol ; 14: 1211064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600768

RESUMO

Background: Machine learning (ML) is a valuable tool with the potential to aid clinical decision making. Adoption of ML to this end requires data that reliably correlates with the clinical outcome of interest; the advantage of ML is that it can model these correlations from complex multiparameter data sets that can be difficult to interpret conventionally. While currently available clinical data can be used in ML for this purpose, there exists the potential to discover new "biomarkers" that will enhance the effectiveness of ML in clinical decision making. Since the interaction of the immune system and cancer is a hallmark of tumor establishment and progression, one potential area for cancer biomarker discovery is through the investigation of cancer-related immune cell signatures. Hence, we hypothesize that blood immune cell signatures can act as a biomarker for cancer progression. Methods: To probe this, we have developed and tested a multiparameter cell-surface marker screening pipeline, using flow cytometry to obtain high-resolution systemic leukocyte population profiles that correlate with detection and characterization of several cancers in murine syngeneic tumor models. Results: We discovered a signature of several blood leukocyte subsets, the most notable of which were monocyte subsets, that could be used to train CATboost ML models to predict the presence and type of cancer present in the animals. Conclusions: Our findings highlight the potential utility of a screening approach to identify robust leukocyte biomarkers for cancer detection and characterization. This pipeline can easily be adapted to screen for cancer specific leukocyte markers from the blood of cancer patient.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Animais , Camundongos , Citometria de Fluxo , Neoplasias/diagnóstico , Leucócitos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA