Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Nutr ; 10: 1190392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565037

RESUMO

Introduction: In humans, adversity in childhood exerts enduring effects on brain and increases the vulnerability to psychiatric diseases. It also leads to a higher risk of eating disorders and obesity. Maternal separation (MS) in mice has been used as a proxy of stress during infancy. We hypothesized that MS in mice affects motivation to obtain palatable food in adulthood and changes gene expression in reward system. Methods: Male and female pups from C57Bl/6J and C3H/HeN mice strains were subjected to a daily MS protocol from postnatal day (PND) 2 to PND14. At adulthood, their motivation for palatable food reward was assessed in operant cages. Results: Compared to control mice, male and female C3H/HeN mice exposed to MS increased their instrumental response for palatable food, especially when the effort required to obtain the reward was high. Importantly, this effect is shown in animals fed ad libitum. Transcriptional analysis revealed 375 genes differentially expressed in the nucleus accumbens of male MS C3H/HeN mice compared to the control group, some of these being associated with the regulation of the reward system (e.g., Gnas, Pnoc). Interestingly, C57Bl/6J mice exposed to MS did not show alterations in their motivation to obtain a palatable reward, nor significant changes in gene expression in the nucleus accumbens. Conclusion: MS produces long-lasting changes in motivation for palatable food in C3H/HeN mice, but has no impact in C57Bl/6J mice. These behavioral alterations are accompanied by drastic changes in gene expression in the nucleus accumbens, a key structure in the regulation of motivational processes.

2.
J Cachexia Sarcopenia Muscle ; 12(4): 1064-1078, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196129

RESUMO

BACKGROUND: Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is severely affected by ageing in humans. METHODS: We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal muscle from 10 studies (total n = 908 muscle methylomes from men and women aged 18-89 years old). We explored the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html). RESULTS: We identified 6710 differentially methylated regions at a stringent false discovery rate <0.005, spanning 6367 unique genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were nonetheless strongly enriched for genes showing age-related differential mRNA and protein expression. After adding a substantial number of samples from five datasets (+371), the updated version of the muscle clock (MEAT 2.0, total n = 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in age prediction error), suggesting that the original version of the muscle clock was very accurate. CONCLUSIONS: We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation. We have made our results available as an open-access, user-friendly, web-based tool called MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/).


Assuntos
Metilação de DNA , Proteômica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético , Adulto Jovem
3.
Nutrients ; 11(5)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035463

RESUMO

According to the "developmental origins of health and disease" (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born to lean mothers. Preconceptional WL normalized the offspring metabolic phenotypes but had unexpected effects on olfactory performance: a reduction in olfactory sensitivity, along with a lack of fasting-induced, olfactory-based motivation. Our results confirm the benefits of maternal preconceptional WL for male offspring metabolic health but highlight some possible adverse outcomes on olfactory-based behaviours.


Assuntos
Metabolismo Energético/fisiologia , Obesidade/metabolismo , Olfato/fisiologia , Redução de Peso , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Fertilização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mães , Gravidez
4.
Mol Metab ; 6(8): 922-930, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752055

RESUMO

OBJECTIVE: According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates predispose offspring to white adipose tissue (WAT) accumulation. In rodents, adipogenesis mainly develops during lactation. The mechanisms underlying the phenomenon known as developmental programming remain elusive. We previously reported that adult rat offspring from high-fat diet-fed dams (called HF) exhibited hypertrophic adipocyte, hyperleptinemia and increased leptin mRNA levels in a depot-specific manner. We hypothesized that leptin upregulation occurs via epigenetic malprogramming, which takes place early during development of WAT. METHODS: As a first step, we identified in silico two potential enhancers located upstream and downstream of the leptin transcription start site that exhibit strong dynamic epigenomic remodeling during adipocyte differentiation. We then focused on epigenetic modifications (methylation, hydroxymethylation, and histone modifications) of the promoter and the two potential enhancers regulating leptin gene expression in perirenal (pWAT) and inguinal (iWAT) fat pads of HF offspring during lactation (postnatal days 12 (PND12) and 21 (PND21)) and in adulthood. RESULTS: PND12 is an active period for epigenomic remodeling in both deposits especially in the upstream enhancer, consistent with leptin gene induction during adipogenesis. Unlike iWAT, some of these epigenetic marks were still observable in pWAT of weaned HF offspring. Retained marks were only visible in pWAT of 9-month-old HF rats that showed a persistent "expandable" phenotype. CONCLUSIONS: Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner.


Assuntos
Epigênese Genética , Leptina/genética , Obesidade/genética , Complicações na Gravidez/genética , Tecido Adiposo Branco/metabolismo , Animais , Metilação de DNA , Feminino , Código das Histonas , Leptina/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar , Regulação para Cima
5.
Cardiovasc Res ; 113(7): 711-724, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472454

RESUMO

Women and men, female and male animals and cells are biologically different, and acknowledgement of this fact is critical to advancing medicine. However, incorporating concepts of sex-specific analysis in basic research is largely neglected, introducing bias into translational findings, clinical concepts and drug development. Research funding agencies recently approached these issues but implementation of policy changes in the scientific community is still limited, probably due to deficits in concepts, knowledge and proper methodology. This expert review is based on the EUGenMed project (www.eugenmed.eu) developing a roadmap for implementing sex and gender in biomedical and health research. For sake of clarity and conciseness, examples are mainly taken from the cardiovascular field that may serve as a paradigm for others, since a significant amount of knowledge how sex and oestrogen determine the manifestation of many cardiovascular diseases (CVD) has been accumulated. As main concepts for implementation of sex in basic research, the study of primary cell and animals of both sexes, the study of the influence of genetic vs. hormonal factors and the analysis of sex chromosomes and sex specific statistics in genome wide association studies (GWAS) are discussed. The review also discusses methodological issues, and analyses strength, weaknesses, opportunities and threats in implementing sex-sensitive aspects into basic research.


Assuntos
Pesquisa Biomédica/métodos , Doenças Cardiovasculares , Sistema Cardiovascular , Disparidades nos Níveis de Saúde , Disparidades em Assistência à Saúde , Projetos de Pesquisa , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Cromossomos Humanos X , Cromossomos Humanos Y , Feminino , Predisposição Genética para Doença , Hormônios Esteroides Gonadais/metabolismo , Humanos , Masculino , Fenótipo , Gravidez , Prognóstico , Fatores de Risco , Caracteres Sexuais , Fatores Sexuais
6.
J Endocrinol ; 230(1): 39-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27122310

RESUMO

According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11ß-hydroxysteroid dehydrogenase type 1 (11ß-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner.


Assuntos
Tecido Adiposo/metabolismo , Lactação/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Obesidade/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Aumento de Peso/fisiologia , Animais , Peso Corporal , Corticosterona/sangue , Feminino , Intolerância à Glucose/metabolismo , Hiperinsulinismo/metabolismo , Masculino , PPAR gama/genética , PPAR gama/metabolismo , Gravidez , Ratos , Fatores Sexuais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Clin Epigenetics ; 8: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925174

RESUMO

BACKGROUND: Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women. Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus. Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects. RESULTS: Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from OB females presented fetal growth restriction (FGR; -13 %) and 28 % of the fetuses were small for gestational age (SGA). Fetuses from WL females normalized this phenotype. The expression of 60 epigenetic machinery genes and 32 metabolic genes was measured in the fetal liver, placental labyrinth, and junctional zone. We revealed 23 genes altered by maternal weight trajectories in at least one of three tissues. The fetal liver and placental labyrinth were more responsive to maternal obesity than junctional zone. One third (18/60) of the epigenetic machinery genes were differentially expressed between at least two maternal groups. Interestingly, genes involved in the histone acetylation pathway were particularly altered (13/18). In OB group, lysine acetyltransferases and Bromodomain-containing protein 2 were upregulated, while most histone deacetylases were downregulated. In WL group, the expression of only a subset of these genes was normalized. CONCLUSIONS: This study highlights the high sensitivity of the epigenetic machinery gene expression, and particularly the histone acetylation pathway, to maternal obesity. These obesity-induced transcriptional changes could alter the placental and the hepatic epigenome, leading to FGR. Preconceptional weight loss appears beneficial to fetal growth, but some effects of previous obesity were retained in offspring phenotype.


Assuntos
Epigênese Genética/genética , Desenvolvimento Fetal/genética , Obesidade/complicações , Complicações na Gravidez/genética , Redução de Peso/genética , Acetilação , Animais , Dieta Hiperlipídica/efeitos adversos , Epigênese Genética/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Histonas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/fisiopatologia , Placenta/metabolismo , Gravidez , Complicações na Gravidez/fisiopatologia , Redução de Peso/fisiologia
8.
Med Sci (Paris) ; 32(1): 27-34, 2016 Jan.
Artigo em Francês | MEDLINE | ID: mdl-26850604

RESUMO

According to the new paradigm of the Developpemental Origins of Health and Disease (DOHaD), the environmental factors to which an individual is exposed throughout his life can leave an epigenetic footprint on the genome. A crucial period is the early development, where the epigenome is particularly sensitive to the effects of the environment, and during which the individual builds up his health capital that will enable him to respond more or less well to the vagaries of life. The research challenge is to decipher the modes of action and the epigenetic mechanisms put into play by environmental factors that lead to increased disease susceptibility or resilience. The challenge for health is to translate these scientific discoveries into action through, among others, the establishment of preventive recommendations to slow down the growing incidence of non communicable diseases.


Assuntos
Doença/etiologia , Meio Ambiente , Epigênese Genética/fisiologia , Saúde , Efeitos Tardios da Exposição Pré-Natal/etiologia , Suscetibilidade a Doenças/etiologia , Feminino , Interação Gene-Ambiente , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
9.
Med Sci (Paris) ; 32(1): 35-44, 2016 Jan.
Artigo em Francês | MEDLINE | ID: mdl-26850605

RESUMO

The existence of non-genetic and non-cultural mechanisms that transfer information on the memory of parental exposures to various environments, determining the reactivity of the following generations to their environments during their life, are of growing interest. Yet fundamental questions remain about the nature, the roles and relative importance of epigenetic marks and processes, non-coding RNAs, or other mechanisms, and their persistence over generations. A model incorporating the various transmission systems, their cross-talks and windows of susceptibility to the environment as a function of sex/gender of parent and offspring, has yet to be built.


Assuntos
Meio Ambiente , Epigênese Genética/fisiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Metilação de DNA/fisiologia , Suscetibilidade a Doenças/etiologia , Características da Família , Feminino , Interação Gene-Ambiente , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , RNA não Traduzido/fisiologia
10.
Med Sci (Paris) ; 32(1): 100-5, 2016 Jan.
Artigo em Francês | MEDLINE | ID: mdl-26850614

RESUMO

The concept of the developmental origins of health and disease (DOHaD) alters our understanding of what constitutes "health" or "disease" intended as chronic, non-communicable diseases, which develop over the life course in high income and emerging countries. It implies a change in paradigm forming a basis for prevention policies across the globe. It also impacts psychological, social, economic, ethical and legal sciences. In line with the unanticipated underpinning epigenetic mechanisms are also the social issues (including public policies) that could be produced by the knowledge related to DOHaD that opens a wide field of inquiry. The information unveiled by epigenetics coupled with information on lifestyle including during the development phase, is of unforeseen nature, raising issues of different nature. Therefore it requires specific attention and research, and a specific support by a pluridisciplinary reflection since the very beginning of its production, to anticipate the questions that might be raised in the future.


Assuntos
Doença/etiologia , Exposição Ambiental , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal , Fatores Sociológicos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Projetos de Pesquisa Epidemiológica , Feminino , Humanos , Armazenamento e Recuperação da Informação/normas , Comunicação Interdisciplinar , Estilo de Vida , Gravidez
11.
Biol Aujourdhui ; 209(2): 175-87, 2015.
Artigo em Francês | MEDLINE | ID: mdl-26514387

RESUMO

The environment, defined broadly by all that is external to the individual, conditions the phenotype during development, particularly the susceptibility to develop non-communicable diseases. This notion, called Developmental Origins of Health and Disease (DOHaD), is based on numerous epidemiological studies as well as animal models. Thus, parental nutrition and obesity can predispose the offspring to develop metabolic and cardiovascular diseases in adulthood. The known underlying mechanisms include an altered development of tissues that adapt to maternal metabolic condition, and a placental dysfunction, which in turn impacts fetal growth and development. Epigenetic mechanisms modulate gene expression without affecting the DNA sequence itself. The main epigenetic marks are DNA methylation and histone post-translational modifications. These marks are erased and set-up during gametogenesis and development in order to ensure cellular identity. Therefore, they can lead to a memorisation of early environment and induce long-term alteration of cell and tissue functions, which will condition the susceptibility to non-communicable diseases. The placenta is a programming agent of adult disease. The environment, such as smoking or psychosocial stress, is able to modify epigenetic processes in placenta, such as small RNA expression and DNA methylation. We showed that placenta is sensitive to maternal obesity and maternal nutrition, in terms of histology, transcription and epigenetic marks. A clear sexual dimorphism is remarkable in the placental response to maternal environment. In adulthood, the phenotype is also different between males and females. Epigenetic mechanisms could underlie this differential response of males and females to the same environment. The DOHaD can no longer be ignored in Biology of Reproduction. The prevention of non-communicable diseases must take this new paradigm into account. Research will allow a better comprehension of the mechanisms of this early conditioning and the marked sexual dimorphism it is associated to.


Assuntos
Desenvolvimento Embrionário , Epigênese Genética , Fenômenos Fisiológicos da Nutrição Materna , Placenta/fisiologia , Adulto , Animais , Doenças Cardiovasculares/embriologia , Doenças Cardiovasculares/fisiopatologia , Metilação de DNA , Dieta Hiperlipídica/efeitos adversos , Suscetibilidade a Doenças , Desenvolvimento Embrionário/genética , Feminino , Transtornos da Nutrição Fetal/etiologia , Transtornos da Nutrição Fetal/prevenção & controle , Histonas/metabolismo , Humanos , Recém-Nascido , Masculino , Desnutrição/fisiopatologia , Síndrome Metabólica/embriologia , Síndrome Metabólica/fisiopatologia , Camundongos , Modelos Biológicos , Obesidade/embriologia , Obesidade/fisiopatologia , Placenta/fisiopatologia , Gravidez , Complicações na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal , Processamento de Proteína Pós-Traducional , Coelhos , Caracteres Sexuais
12.
Endocrinology ; 156(10): 3408-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26241067

RESUMO

The Developmental Origins of Health and Disease (DOHaD) paradigm is one of the most rapidly expanding areas of biomedical research. Environmental stressors that can impact on DOHaD encompass a variety of environmental and occupational hazards as well as deficiency and oversupply of nutrients and energy. They can disrupt early developmental processes and lead to increased susceptibility to disease/dysfunctions later in life. Presentations at the fourth Conference on Prenatal Programming and Toxicity in Boston, in October 2014, provided important insights and led to new recommendations for research and public health action. The conference highlighted vulnerable exposure windows that can occur as early as the preconception period and epigenetics as a major mechanism than can lead to disadvantageous "reprogramming" of the genome, thereby potentially resulting in transgenerational effects. Stem cells can also be targets of environmental stressors, thus paving another way for effects that may last a lifetime. Current testing paradigms do not allow proper characterization of risk factors and their interactions. Thus, relevant exposure levels and combinations for testing must be identified from human exposure situations and outcome assessments. Testing of potential underpinning mechanisms and biomarker development require laboratory animal models and in vitro approaches. Only few large-scale birth cohorts exist, and collaboration between birth cohorts on a global scale should be facilitated. DOHaD-based research has a crucial role in establishing factors leading to detrimental outcomes and developing early preventative/remediation strategies to combat these risks.


Assuntos
Exposição Ambiental , Efeitos Tardios da Exposição Pré-Natal , Boston , Embriologia/métodos , Epigênese Genética , Epigenômica , Feminino , Humanos , Masculino , Exposição Materna , Obesidade/etiologia , Placenta/metabolismo , Gravidez , Fatores de Risco , Células-Tronco/citologia , Estresse Psicológico , Telômero/ultraestrutura
13.
J Exp Biol ; 218(Pt 1): 50-8, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25568451

RESUMO

The recent and rapid worldwide increase in non-communicable diseases challenges the assumption that genetic factors are the primary contributors to such diseases. A new concept of the 'developmental origins of health and disease' (DOHaD) is at stake and therefore requires a paradigm shift. Maternal obesity and malnutrition predispose offspring to develop metabolic syndrome, a vicious cycle leading to transmission to subsequent generation(s), with differences in response and susceptibility according to the sex of the individual. The placenta is a programming agent of adult health and disease. Adaptations of placental phenotype in response to maternal diet and metabolic status alter fetal nutrient supply. This implies important epigenetic changes that are, however, still poorly documented in DOHaD studies, particularly concerning overnutrition. The aim of this review is to discuss the emerging knowledge on the relationships between the effect of maternal nutrition or metabolic status on placental function and the risk of diseases later in life, with a specific focus on epigenetic mechanisms and sexual dimorphism. Explaining the sex-specific causal variables and how males versus females respond and adapt to environmental perturbations should help physicians and patients to anticipate disease susceptibility.


Assuntos
Doença/genética , Epigênese Genética , Saúde , Fenômenos Fisiológicos da Nutrição Materna , Placenta/metabolismo , Animais , Feminino , Gravidez , Caracteres Sexuais
14.
PLoS One ; 8(6): e66816, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826145

RESUMO

According to the developmental origins of health and diseases (DOHaD), and in line with the findings of many studies, obesity during pregnancy is clearly a threat to the health and well-being of the offspring, later in adulthood. We previously showed that 20% of male and female inbred mice can cope with the obesogenic effects of a high-fat diet (HFD) for 20 weeks after weaning, remaining lean. However the feeding of a control diet (CD) to DIO mice during the periconceptional/gestation/lactation period led to a pronounced sex-specific shift (17% to 43%) from susceptibility to resistance to HFD, in the female offspring only. Our aim in this study was to determine how, in the context of maternal obesity and T2D, a CD could increase resistance on female fetuses. Transcriptional analyses were carried out with a custom-built mouse liver microarray and by quantitative RT-PCR for muscle and adipose tissue. Both global DNA methylation and levels of pertinent histone marks were assessed by LUMA and western blotting, and the expression of 15 relevant genes encoding chromatin-modifying enzymes was analyzed in tissues presenting global epigenetic changes. Resistance was associated with an enhancement of hepatic pathways protecting against steatosis, the unexpected upregulation of neurotransmission-related genes and the modulation of a vast imprinted gene network. Adipose tissue displayed a pronounced dysregulation of gene expression, with an upregulation of genes involved in lipid storage and adipocyte hypertrophy or hyperplasia in obese mice born to lean and obese mothers, respectively. Global DNA methylation, several histone marks and key epigenetic regulators were also altered. Whether they were themselves lean (resistant) or obese (sensitive), the offspring of lean and obese mice clearly differed in terms of several metabolic features and epigenetic marks suggesting that the effects of a HFD depend on the leanness or obesity of the mother.


Assuntos
Dieta , Epigênese Genética , Perfilação da Expressão Gênica , Obesidade/genética , Transcrição Gênica , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diabetes Mellitus Experimental/genética , Dieta Hiperlipídica , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Impressão Genômica/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Fenótipo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/genética
15.
Biol Sex Differ ; 4(1): 5, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23514128

RESUMO

Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.

16.
Am J Physiol Endocrinol Metab ; 304(1): E14-22, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23092912

RESUMO

Low birth weight is associated with an increased risk for developing type 2 diabetes and metabolic diseases. The placental capacity to supply nutrients and oxygen to the fetus represents the main determiner of fetal growth. However, few studies have investigated the effects of maternal diet on the placenta. We explored placental adaptive proteomic processes implicated in response to maternal undernutrition. Rat term placentas from 70% food-restricted (FR30) mothers were used for a proteomic screen. Placental mitochondrial functions were evaluated using molecular and functional approaches, and ATP production was measured. FR30 drastically reduced placental and fetal weights. FR30 placentas displayed 14 proteins that were differentially expressed, including several mitochondrial proteins. FR30 induced a marked increase in placental mtDNA content and changes in mitochondrial functions, including modulation of the expression of genes implicated in biogenesis and bioenergetic pathways. FR30 mitochondria showed higher oxygen consumption but failed to maintain their ATP production. Maternal undernutrition induces placental mitochondrial abnormalities. Although an increase in biogenesis and bioenergetic efficiency was noted, placental ATP level was reduced. Our data suggest that placental mitochondrial defects may be implicated in fetoplacental pathologies.


Assuntos
Restrição Calórica/efeitos adversos , Metabolismo Energético/fisiologia , Retardo do Crescimento Fetal/etiologia , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/fisiologia , Placenta/metabolismo , Animais , Eficiência/fisiologia , Feminino , Retardo do Crescimento Fetal/metabolismo , Masculino , Troca Materno-Fetal/fisiologia , Mitocôndrias/metabolismo , Placenta/fisiologia , Placenta/ultraestrutura , Circulação Placentária/fisiologia , Gravidez , Ratos , Ratos Wistar
17.
PLoS One ; 7(11): e47986, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144842

RESUMO

Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Epigênese Genética , Expressão Gênica , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Placenta/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Caracteres Sexuais , Transcriptoma
18.
Med Sci (Paris) ; 28(2): 185-92, 2012 Feb.
Artigo em Francês | MEDLINE | ID: mdl-22377307

RESUMO

A new definition of sexual dimorphism is required. The divergent biology of the sexes is still largely ignored, overshadowed by sociocultural considerations and confined to its hormonal organizational and activational effects, while the genes unequally expressed by the sex chromosomes play an important role much earlier, after conception, to set the stage and throughout life. These different components have independent and parallel effects that can interact in a synergistic or antagonistic manner on differentiation and response processes to trigger or erase sex-specific differences. The epigenetic marks and machinery represent the perfect tools to keep the memory of which sex is ours from the very beginning of life. Within the context of the developmental origin of adult health and diseases (DOHaD), owing to their flexibility to the environment, epigenetic marks also represent a support to archive the effects of environments during development, according to the sex of the parent, in a sex-specific mode. In all tissues, including gonads and brain, different trajectories of genes and pathways are used at the basal levels and to modulate/dictate responses according to sex and gender. It is urgent to emphasize the need to take into consideration this new knowledge and to apply less sex-biased approaches in research, medicine and society, to enhance women health and well-being. A critical review and realization of gender-specific social constraints, an indeniably but slowly on-going process, should allow us to "set free our sex biology" while detracting the delusion of hierarchy of the complex mechanisms involved.


Assuntos
Caracteres Sexuais , Diferenciação Sexual/fisiologia , Adulto , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Epigênese Genética/fisiologia , Feminino , Interação Gene-Ambiente , História do Século XXI , Humanos , Masculino , Modelos Biológicos , Gravidez , Diferenciação Sexual/genética , Fatores Socioeconômicos
19.
Am J Clin Nutr ; 94(6 Suppl): 1943S-1952S, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22049164

RESUMO

The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli that result in modified gene expression patterns and phenotypes later in life, are a topic of considerable interest. This article focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, positions, and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects of environmental stressors on a small number of epigenetic marks, at the global or individual gene level, in humans and in animal models. In parallel, increasing numbers of studies based on high-throughput technologies are revealing additional complexity in epigenetic processes by highlighting the importance of crosstalk between different epigenetic marks in humans and mice. A number of studies focusing on metabolic programming and the developmental origin of health and disease have identified links between early nutrition, epigenetic processes, and long-term illness. The existence of a self-propagating epigenetic cycle has been shown. Moreover, recent studies have shown an obvious sexual dimorphism both for programming trajectories and in response to the same environmental insult. Despite recent progress, however, we are still far from understanding how, when, and where environmental stressors disturb key epigenetic mechanisms. Thus, the need to identify original key marks and monitor the changes they undergo throughout development, during an individual's lifetime, or over several generations remains a challenging issue.


Assuntos
Epigênese Genética , Desenvolvimento Fetal/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Metilação de DNA , Exposição Ambiental/efeitos adversos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/metabolismo , Histonas/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Filogenia , Placenta/metabolismo , Gravidez
20.
World J Diabetes ; 2(10): 164-75, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22010058

RESUMO

The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli, which result in modified gene expression patterns and phenotypes later in life, is a topic of considerable interest. This review focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, position and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects on a small number of epigenetic marks, at the global or individual gene level, of environmental stressors in humans and animal models. In parallel, increasing numbers of studies based on high-throughput technologies and focusing on humans and mice have revealed additional complexity in epigenetic processes, by highlighting the importance of crosstalk between the different epigenetic marks. A number of studies focusing on the developmental origin of health and disease and metabolic programming have identified links between early nutrition, epigenetic processes and long-term illness. The existence of a self-propagating epigenetic cycle has been demonstrated. Moreover, recent studies demonstrate an obvious sexual dimorphism both for programming trajectories and in response to the same environmental insult. Despite recent progress, we are still far from understanding how, when and where environmental stressors disturb key epigenetic mechanisms. Thus, identifying the original key marks and their changes throughout development during an individual's lifetime or over several generations remains a challenging issue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA