Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Dent ; 2023: 8882878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780934

RESUMO

Purpose: In case of need for esthetical improvement of zirconia restorations, an individualization using extrinsic staining can be applied. This study aimed to evaluate the surface roughness and fatigue strength (survival) of high-translucency zirconia (3Y-TZP, YZ®HT, Vita Zanhfabrik) with extrinsic characterization and/or glaze. Methods: Sixty (60) zirconia discs (12 × 1.2 mm) were obtained, sintered, and randomly distributed among three groups (n = 20) according to the surface finishing protocol: C (control), C + G (extrinsic characterization followed by a glaze layer), and G (glaze layer). The surface roughness (Ra) was analyzed with a contact profilometer. Subsequently, the specimens were subjected to a fatigue load profile starting at 120 N during 20,000 cycles at 4 Hz frequency, with a 5% increase at each step until failure. The failed specimens were evaluated under a stereomicroscope. Surface roughness analysis was evaluated by using one-way ANOVA and post hoc Tukey tests (95%); while fatigue survival probability was analyzed with Kaplan-Meier and Mantel-Cox (log- rank, 95%). Results: One-way ANOVA revealed that surface roughness was affected by the finishing protocol, where C + G showed the highest mean value (0.46 ± 0.18 µm)A followed by G (0.30 ± 0.10 µm)B, and C (0.19 ± 0.02 µm)C. While for fatigue strength, the G protocol presented a higher mean value (243.00, and 222.36-263.63)A, followed by C + G (192.75 and 186.61-198.88)B and C (172.50 and 159.43-185.56)C. Conclusion: Surface finishing protocols modify the surface roughness and fatigue strength of high-translucent zirconia. Regardless of the surface roughness, both glazing protocols improved the ceramic fatigue strength, favoring the restoration's long-term survival.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36704190

RESUMO

Background. New surface treatments have been proposed to expand the clinical indications of zirconia prostheses. This study aimed to evaluate the effect of silica and fluorine nanofilms on zirconia ceramic on the resin cement bond strength. Methods. Zirconia blocks and discs underwent different surface treatments: untreated zirconia (CON), sandblasted, silica-coated alumina particles (30 µm) (SC), silica nanofilm (SN), and fluorine nanofilm (FN). Nanofilm deposition was performed through plasma enhanced chemical vapor deposition (PECVD). Zirconia surfaces were characterized on disks by morphology (atomic force microscopy, AFM), chemical analysis (x-ray photoelectron spectroscopy, XPS), and contact angle analysis. A silane coupling agent was applied on each treated surface, and a cylinder of resin cement was built up. Half of the specimens in each group were submitted to 6000 thermal cycles (TC). Bond strength was analyzed using the shear test, and the fractographic analysis was performed with stereomicroscopy and SEM/EDS. Statistical analysis was performed through one-way ANOVA and Tukey test in the non-aged and aged specimens. Results. Nanofilms modified the zirconia surface, which became more hydrophilic and chemically reactive. Chemical bonding between Si-O was found in SN, and FN promoted a fluorination process on the ceramic surface, converting zirconia into zirconium oxyfluoride. Specimens of the SN (TC) group failed on pre-testing. FN (TC) bond strength (3.8 MPa) was lower than SC (TC) and CON (TC) after shearing. Adhesive failure predominated in the experimental groups. Silica nanofilm failure occurred after aging. Conclusion. Silica and fluorine nanofilms deposited by PECVD did not promote effective bonding between zirconia and resin cement.

3.
J Prosthodont ; 22(6): 451-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23574425

RESUMO

PURPOSE: The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. MATERIALS AND METHODS: Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). RESULTS: C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). CONCLUSION: Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users.


Assuntos
Resinas Acrílicas/química , Biofilmes , Candida albicans/fisiologia , Carbono/química , Materiais Revestidos Biocompatíveis/química , Materiais Dentários/química , Diamante/química , Contagem de Colônia Microbiana , Polimento Dentário/métodos , Galvanoplastia/métodos , Humanos , Microscopia de Força Atômica , Nanopartículas/química , Polimerização , Polimetil Metacrilato/química , Prata/química , Espectrofotometria Ultravioleta , Análise Espectral , Propriedades de Superfície , Temperatura , Fatores de Tempo
4.
Dent Mater ; 28(7): 763-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22520227

RESUMO

OBJECTIVES: To test the hypothesis that multiple firing and silica deposition on the zirconia surface influence the bond strength to porcelain. MATERIALS AND METHODS: Specimens were cut from yttria-stabilized zirconia blocks and sintered. Half of the specimens (group S) were silica coated (physical vapor deposition (PVD)) via reactive magnetron sputtering before porcelain veneering. The remaining specimens (group N) had no treatment before veneering. The contact angle before and after silica deposition was measured. Porcelain was applied on all specimens and submitted to two (N2 and S2) or three firing cycles (N3 and S3). The resulting porcelain-zirconia blocks were sectioned to obtain bar-shaped specimens with 1mm(2) of cross-sectional area. Specimens were attached to a universal testing machine and tested in tension until fracture. Fractured surfaces were examined using optical microscopy. Data were statistically analyzed using two-way ANOVA, Tukey's test (α=0.05) and Weibull analysis. RESULTS: Specimens submitted to three firing cycles (N3 and S3) showed higher mean bond strength values than specimens fired twice (N2 and S2). Mean contact angle was lower for specimens with silica layer, but it had no effect on bond strength. Most fractures initiated at porcelain-zirconia interface and propagated through the porcelain. SIGNIFICANCE: The molecular deposition of silica on the zirconia surface had no influence on bond strength to porcelain, while the number of porcelain firing cycles significantly affected the bond strength of the ceramic system, partially accepting the study hypothesis. Yet, the Weibull modulus values of S groups were significantly greater than the m values of N groups.


Assuntos
Colagem Dentária/métodos , Materiais Dentários/química , Porcelana Dentária/química , Dióxido de Silício/química , Zircônio/química , Análise de Variância , Análise do Estresse Dentário , Temperatura Alta , Teste de Materiais , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA