Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(30): E2782-91, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23824290

RESUMO

HBc, the capsid-forming "core protein" of human hepatitis B virus (HBV), is a multidomain, α-helical homodimer that aggressively forms human HBV capsids. Structural plasticity has been proposed to be important to the myriad functions HBc mediates during viral replication. Here, we report detailed thermodynamic analyses of the folding of the dimeric HBc protomer under conditions that prevented capsid formation. Central to our success was the use of ion mobility spectrometry-mass spectrometry and microscale thermophoresis, which allowed folding mechanisms to be characterized using just micrograms of protein. HBc folds in a three-state transition with a stable, dimeric, α-helical intermediate. Extensive protein engineering showed thermodynamic linkage between different structural domains. Unusual effects associated with mutating some residues suggest structural strain, arising from frustrated contacts, is present in the native dimer. We found evidence of structural gatekeepers that, when mutated, alleviated native strain and prevented (or significantly attenuated) capsid formation by tuning the population of alternative native conformations. This strain is likely an evolved feature that helps HBc access the different structures associated with its diverse essential functions. The subtle balance between native and strained contacts may provide the means to tune conformational properties of HBc by molecular interactions or mutations, thereby conferring allosteric regulation of structure and function. The ability to trap HBc conformers thermodynamically by mutation, and thereby ablate HBV capsid formation, provides proof of principle for designing antivirals that elicit similar effects.


Assuntos
Capsídeo , Vírus da Hepatite B/química , Dobramento de Proteína , Termodinâmica , Proteínas do Core Viral/química , Regulação Alostérica , Dimerização , Espectrometria de Massas , Modelos Moleculares
2.
Nat Chem Biol ; 9(9): 540-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851574

RESUMO

Hepatitis B virus (HBV) is an infectious, potentially lethal human pathogen. However, there are no effective therapies for chronic HBV infections. Antiviral development is hampered by the lack of high-resolution structures for essential HBV protein-protein interactions. The interaction between preS1, an HBV surface-protein domain, and its human binding partner, γ2-adaptin, subverts the membrane-trafficking apparatus to mediate virion export. This interaction is a putative drug target. We report here atomic-resolution descriptions of the binding thermodynamics and structural biology of the interaction between preS1 and the EAR domain of γ2-adaptin. NMR, protein engineering, X-ray crystallography and MS showed that preS1 contains multiple γ2-EAR-binding motifs that mimic the membrane-trafficking motifs (and binding modes) of host proteins. These motifs localize together to a relatively rigid, functionally important region of preS1, an intrinsically disordered protein. The preS1-γ2-EAR interaction was relatively weak and efficiently outcompeted by a synthetic peptide. Our data provide the structural road map for developing peptidomimetic antivirals targeting the γ2-EAR-preS1 interaction.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Antígenos de Superfície da Hepatite B/química , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Mimetismo Molecular , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Estrutura Terciária de Proteína , Termodinâmica
3.
Nat Struct Mol Biol ; 19(12): 1273-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160351

RESUMO

Polycomb group proteins are repressive chromatin modifiers with essential roles in metazoan development, cellular differentiation and cell fate maintenance. How Polycomb proteins access active chromatin to confer transcriptional silencing during lineage transitions remains unclear. Here we show that the Polycomb repressive complex 2 (PRC2) component PHF19 binds trimethylated histone H3 Lys36 (H3K36me3), a mark of active chromatin, via its Tudor domain. PHF19 associates with the H3K36me3 demethylase NO66, and it is required to recruit the PRC2 complex and NO66 to stem cell genes during differentiation, leading to PRC2-mediated trimethylation of histone H3 Lys27 (H3K27), loss of H3K36me3 and transcriptional silencing. We propose a model whereby PHF19 functions during mouse embryonic stem cell differentiation to transiently bind the H3K36me3 mark via its Tudor domain, forming essential contact points that allow recruitment of PRC2 and H3K36me3 demethylase activity to active gene loci during their transition to a Polycomb-repressed state.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Camundongos
4.
J Biol Chem ; 286(31): 27167-75, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21653701

RESUMO

Protein-protein interactions mediated by modular protein domains are critical for cell scaffolding, differentiation, signaling, and ultimately, evolution. Given the vast number of ligands competing for binding to a limited number of domain families, it is often puzzling how specificity can be achieved. Selectivity may be modulated by intradomain allostery, whereby a remote residue is energetically connected to the functional binding site via side chain or backbone interactions. Whereas several energetic pathways, which could mediate intradomain allostery, have been predicted in modular protein domains, there is a paucity of experimental data to validate their existence and roles. Here, we have identified such functional energetic networks in one of the most common protein-protein interaction modules, the PDZ domain. We used double mutant cycles involving site-directed mutagenesis of both the PDZ domain and the peptide ligand, in conjunction with kinetics to capture the fine energetic details of the networks involved in peptide recognition. We performed the analysis on two homologous PDZ-ligand complexes and found that the energetically coupled residues differ for these two complexes. This result demonstrates that amino acid sequence rather than topology dictates the allosteric pathways. Furthermore, our data support a mechanism whereby the whole domain and not only the binding pocket is optimized for a specific ligand. Such cross-talk between binding sites and remote residues may be used to fine tune target selectivity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Termodinâmica
5.
J Biol Chem ; 285(23): 18051-9, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20356847

RESUMO

Protein domains usually fold without or with only transiently populated intermediates, possibly to avoid misfolding, which could result in amyloidogenic disease. Whether observed intermediates are productive and obligatory species on the folding reaction pathway or dispensable by-products is a matter of debate. Here, we solved the crystal structure of a small protein domain, SAP97 PDZ2 I342W C378A, and determined its folding pathway. The presence of a folding intermediate was demonstrated both by single and double-mixing kinetic experiments using urea-induced (un)folding as well as ligand-induced folding. This protein domain was found to fold via a triangular scheme, where the folding intermediate could be either on- or off-pathway, depending on the experimental conditions. Furthermore, we found that the intermediate was present at equilibrium, which is rarely seen in folding reactions of small protein domains. The folding mechanism observed here illustrates the roughness and plasticity of the protein folding energy landscape, where several routes may be employed to reach the native state. The results also reconcile the folding mechanisms of topological variants within the PDZ domain family.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Amiloide/química , Proteínas de Membrana/química , Proteína 1 Homóloga a Discs-Large , Corantes Fluorescentes/química , Cinética , Ligantes , Mutação , Polímeros , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA