Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 10(6): 1272-1286, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116215

RESUMO

The use of biobased materials in additive manufacturing is a promising long-term strategy for advancing the polymer industry toward a circular economy and reducing the environmental impact. In commercial 3D printing formulations, there is still a scarcity of efficient biobased polymer resins. This research proposes vegetable oils as biobased components to formulate the stereolithography (SLA) resin. Application of nanocellulose filler, prepared from agricultural waste, remarkably improves the printed material's performance properties. The strong bonding of nanofibrillated celluloses' (NFCs') matrix helps develop a strong interface and produce a polymer nanocomposite with enhanced thermal properties and dynamical mechanical characteristics. The ultra-low NFC content of 0.1-1.0 wt% (0.07-0.71 vol%) was examined in printed samples, with the lowest concentration yielding some of the most promising results. The developed SLA resins showed good printability, and the printing accuracy was not decreased by adding NFC. At the same time, an increase in the resin viscosity with higher filler loading was observed. Resins maintained high transparency in the 500-700 nm spectral region. The glass transition temperature for the 0.71 vol% composition increased by 28°C when compared to the nonreinforced composition. The nanocomposite's stiffness has increased fivefold for the 0.71 vol% composition. The thermal stability of printed compositions was retained after cellulose incorporation, and thermal conductivity was increased by 11%. Strong interfacial interactions were observed between the cellulose and the polymer in the form of hydrogen bonding between hydroxyl and ester groups, which were confirmed by Fourier-transform infrared spectroscopy. This research demonstrates a great potential to use acrylated vegetable oils and nanocellulose fillers as a feedstock to produce high-performance resins for sustainable SLA 3D printing.

2.
Data Brief ; 43: 108395, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35811650

RESUMO

Here we show the effect of the ionic liquid nature, its content and monomer/crosslinker ratio on the copolymerization of N-vinylpyrrolidone (NVP) with triethylene glycol dimethacrylate (TEGDMA) induced by UV or heat irradiation. For the first time, kinetics curves of photopolymerization NVP with TEGDMA in the presence of ionic liquids are obtained. The ionic liquids EmimBF4, BmimBF4, OmimBF4 and EmimTFSI with different cation and anion structures and lengths of the alkyl radical were varied in photopolymer compositions. To understand the influence of ionic liquids on the polymerization kinetics, photo-DSC, dynamic DSC, and FTIR were performed. Parameters obtained from photo-DSC curves allowed to develop the methodology for the stereolithography of ionogels. The presented data constitutes the complete dataset useful for 3D-printing of ionogels with high accuracy, which is reported in the main article.

3.
Polymers (Basel) ; 13(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917193

RESUMO

Typical resins for UV-assisted additive manufacturing (AM) are prepared from petroleum-based materials and therefore do not contribute to the growing AM industry trend of converting to sustainable bio-based materials. To satisfy society and industry's demand for sustainability, renewable feedstocks must be explored; unfortunately, there are not many options that are applicable to photopolymerization. Nevertheless, some vegetable oils can be modified to be suitable for UV-assisted AM technologies. In this work, extended study, through FTIR and photorheology measurements, of the UV-curing of epoxidized acrylate from soybean oil (AESO)-based formulations has been performed to better understand the photopolymerization process. The study demonstrates that the addition of appropriate functional comonomers like trimethylolpropane triacrylate (TMPTA) and the adjusting of the concentration of photoinitiator from 1% to 7% decrease the needed UV-irradiation time by up to 25%. Under optimized conditions, the optimal curing time was about 4 s, leading to a double bond conversion rate (DBC%) up to 80% and higher crosslinking density determined by the Flory-Rehner empirical approach. Thermal and mechanical properties were also investigated via TGA and DMA measurements that showed significant improvements of mechanical performances for all formulations. The properties were improved further upon the addition of the reactive diluents. After the thorough investigations, the prepared vegetable oil-based resin ink formulations containing reactive diluents were deemed suitable inks for UV-assisted AM, giving their appropriate viscosity. The validation was done by printing different objects with complex structures using a laser based stereolithography apparatus (SLA) printer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA