Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(7): 3086-3093, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341704

RESUMO

Bioprinting of hydrogel-based bioinks can allow for the fabrication of elaborate, cell-laden 3D structures. In addition to providing an adequate extracellular matrix mimetic environment and high cell viability, the hydrogels must offer facile extrusion through the printing nozzle and retain the shape of the printed structure. We demonstrate a strategy to incorporate cellulose oxalate nanofibrils in hyaluronan-based hydrogels to generate shear thinning bioinks that allowed for printing of free-standing multilayer structures, covalently cross-linked after bioprinting, yielding long-term stability. The storage modulus of the hydrogels was tunable between 0.5 and 1.5 kPa. The nanocellulose containing hydrogels showed good biocompatibility, with viability of primary human dermal fibroblasts above 80% at day 7 after seeding. The cells were also shown to tolerate the printing process well, with viability above 80% 24 h after printing. We anticipate that this hydrogel system can find broad use as a bioink to produce complex geometries that can support cell growth.


Assuntos
Bioimpressão , Ácido Hialurônico , Humanos , Impressão Tridimensional , Reologia , Hidrogéis/química , Sobrevivência Celular , Alicerces Teciduais/química , Engenharia Tecidual
2.
Sci Technol Adv Mater ; 24(1): 2165871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733710

RESUMO

Astrocytes play an important role in the central nervous system, contributing to the development of and maintenance of synapses, recycling of neurotransmitters, and the integrity and function of the blood-brain barrier. Astrocytes are also linked to the pathophysiology of various neurodegenerative diseases. Astrocyte function and organization are tightly regulated by interactions mediated by the extracellular matrix (ECM). Engineered hydrogels can mimic key aspects of the ECM and can allow for systematic studies of ECM-related factors that govern astrocyte behaviour. In this study, we explore the interactions between neuroblastoma (SH-SY5Y) and glioblastoma (U87) cell lines and human fetal primary astrocytes (FPA) with a modular hyaluronan-based hydrogel system. Morphological analysis reveals that FPA have a higher degree of interactions with the hyaluronan-based gels compared to the cell lines. This interaction is enhanced by conjugation of cell-adhesion peptides (cRGD and IKVAV) to the hyaluronan backbone. These effects are retained and pronounced in 3D bioprinted structures. Bioprinted FPA using cRGD functionalized hyaluronan show extensive and defined protrusions and multiple connections between neighboring cells. Possibilities to tailor and optimize astrocyte-compatible ECM-mimicking hydrogels that can be processed by means of additive biofabrication can facilitate the development of advanced tissue and disease models of the central nervous system.

3.
Adv Healthc Mater ; 11(11): e2102097, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114074

RESUMO

Laminins (LNs) are key components in the extracellular matrix of neuronal tissues in the developing brain and neural stem cell niches. LN-presenting hydrogels can provide a biologically relevant matrix for the 3D culture of neurons toward development of advanced tissue models and cell-based therapies for the treatment of neurological disorders. Biologically derived hydrogels are rich in fragmented LN and are poorly defined concerning composition, which hampers clinical translation. Engineered hydrogels require elaborate and often cytotoxic chemistries for cross-linking and LN conjugation and provide limited possibilities to tailor the properties of the materials. Here a modular hydrogel system for neural 3D cell cultures, based on hyaluronan and poly(ethylene glycol), that is cross-linked and functionalized with human recombinant LN-521 using bioorthogonal copper-free click chemistry, is shown. Encapsulated human neuroblastoma cells demonstrate high viability and grow into spheroids. Long-term neuroepithelial stem cells (lt-NES) cultured in the hydrogels can undergo spontaneous differentiation to neural fate and demonstrate significantly higher viability than cells cultured without LN. The hydrogels further support the structural integrity of 3D bioprinted structures and maintain high viability of bioprinted and syringe extruded lt-NES, which can facilitate biofabrication and development of cell-based therapies.


Assuntos
Bioimpressão , Hidrogéis , Técnicas de Cultura de Células , Humanos , Ácido Hialurônico , Hidrogéis/química , Hidrogéis/farmacologia , Laminina/farmacologia , Neurônios , Engenharia Tecidual
4.
Biofabrication ; 12(3): 035031, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428894

RESUMO

Hydrogels are used in a wide range of biomedical applications, including three-dimensional (3D) cell culture, cell therapy and bioprinting. To enable processing using advanced additive fabrication techniques and to mimic the dynamic nature of the extracellular matrix (ECM), the properties of the hydrogels must be possible to tailor and change over time with high precision. The design of hydrogels that are both structurally and functionally dynamic, while providing necessary mechanical support is challenging using conventional synthesis techniques. Here, we show a modular and 3D printable hydrogel system that combines a robust but tunable covalent bioorthogonal cross-linking strategy with specific peptide-folding mediated interactions for dynamic modulation of cross-linking and functionalization. The hyaluronan-based hydrogels were covalently cross-linked by strain-promoted alkyne-azide cycloaddition using multi-arm poly(ethylene glycol). In addition, a de novo designed helix-loop-helix peptide was conjugated to the hyaluronan backbone to enable specific peptide-folding modulation of cross-linking density and kinetics, and hydrogel functionality. An array of complementary peptides with different functionalities was developed and used as a toolbox for supramolecular tuning of cell-hydrogel interactions and for controlling enzyme-mediated biomineralization processes. The modular peptide system enabled dynamic modifications of the properties of 3D printed structures, demonstrating a novel route for design of more sophisticated bioinks for four-dimensional bioprinting.


Assuntos
Bioimpressão , Hidrogéis/química , Peptídeos/química , Células Imobilizadas/citologia , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Células Hep G2 , Humanos , Modelos Moleculares , Multimerização Proteica , Temperatura , Fatores de Tempo
5.
Biofabrication ; 11(1): 015013, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30523863

RESUMO

Liver cell culture models are attractive in both tissue engineering and for development of assays for drug toxicology research. To retain liver specific cell functions, the use of adequate cell types and culture conditions, such as a 3D orientation of the cells and a proper supply of nutrients and oxygen, are critical. In this article, we show how extracellular matrix mimetic hydrogels can support hepatocyte viability and functionality in a perfused liver-on-a-chip device. A modular hydrogel system based on hyaluronan and poly(ethylene glycol) (HA-PEG), modified with cyclooctyne moieties for bioorthogonal strain-promoted alkyne-azide 1, 3-dipolar cycloaddition (SPAAC), was developed, characterized, and compared for cell compatibility to hydrogels based on agarose and alginate. Hepatoma cells (HepG2) formed spheroids with viable cells in all hydrogels with the highest expression of albumin and urea in alginate hydrogels. By including an excess of cyclooctyne in the HA backbone, azide-modified cell adhesion motifs (linear and cyclic RGD peptides) could be introduced in order to enhance viability and functionality of human induced pluripotent stem cell derived hepatocytes (hiPS-HEPs). In the HA-PEG hydrogels modified with cyclic RGD peptides hiPS-HEPs migrated and grew in 3D and showed an increased viability and higher albumin production compared to when cultured in the other hydrogels. This flexible SPAAC crosslinked hydrogel system enabled fabrication of perfused 3D cell culture of hiPS-HEPs and is a promising material for further development and optimization of liver-on-a-chip devices.


Assuntos
Técnicas de Cultura de Células/instrumentação , Hepatócitos/citologia , Ácido Hialurônico/química , Fígado/citologia , Polietilenoglicóis/química , Engenharia Tecidual/instrumentação , Materiais Biocompatíveis/química , Sobrevivência Celular , Matriz Extracelular/química , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA