Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 326: 121611, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142095

RESUMO

Hemicellulose and pectin are noteworthy components of historical European rag papers, and have not been studied in detail so far. Rag papers were made from used textiles, and fiber-based utilities, such as ropes and bags. These had been prepared until the mid-19th century from plant-based fibers. Their polysaccharide composition could relate to their condition and history. This information can be expected to hold importance for the preservation and conservation of historical objects. We investigated a collection of rag papers of different age for their composition of non-cellulosic polysaccharides, and compared the findings with modern rag papers and wood pulps. Furthermore, a non-destructive determination of the hemicellulose and pectin content by near-infrared spectroscopy was developed. Historical rag papers had a lower hemicellulose/pectin content than pulps; the fractions of rhamnose, galactose, and arabinose were higher, while xylose was lower. In modern rag papers, xylose tended to be at the higher end of the range, which suggests a degradation of hemicelluloses/pectin over time or a change in raw materials and manufacturing. Rag papers also showed higher crystallinity than wood pulp papers. These findings provide insights into rag paper characteristics and offer potential classification methods.


Assuntos
Polissacarídeos , Xilose , Xilose/metabolismo , Polissacarídeos/química , Pectinas/metabolismo , Madeira/química , Arabinose/análise
2.
J Am Chem Soc ; 143(41): 17040-17046, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617737

RESUMO

Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving regioselective surface modification of C6-OH, which can be reverted using mild post-treatments. No polymer degradation, cross-linking, nor changes in crystallinity occur under the mild processing conditions, yielding cellulose nanofibrils bearing carboxyl moieties, which can be removed by saponification. The latter offers a significant opportunity in the reconstitution of the chemical and structural interfaces associated with the native states. Consequently, 3D structuring of native elementary cellulose nanofibrils is made possible with the same supramolecular features as the biosynthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.

3.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299657

RESUMO

Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials' constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) has been widely employed to quantify cellulose and lignin in papyrus sheets, yielding reported lignin contents of 25% to 40%. In this work, the TGA method conventionally used for papyrus samples was repeated and compared to other lignin determination approaches (Klason-lignin and acetyl bromide-soluble lignin). TGA can lead to a large overestimation of the lignin content of commercial papyrus sheets (~27%) compared to the other methods (~5%). A similar overestimation of the lignin content was found for the pith and rind of the native papyrus plant. We concluded that the TGA method should, therefore, not be used for lignin quantification.


Assuntos
Lignina/análise , Extratos Vegetais
4.
Nat Commun ; 12(1): 2513, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947852

RESUMO

The remarkable efficiency of chemical reactions is the result of biological evolution, often involving confined water. Meanwhile, developments of bio-inspired systems, which exploit the potential of such water, have been so far rather complex and cumbersome. Here we show that surface-confined water, inherently present in widely abundant and renewable cellulosic fibres can be utilised as nanomedium to endow a singular chemical reactivity. Compared to surface acetylation in the dry state, confined water increases the reaction rate and efficiency by 8 times and 30%, respectively. Moreover, confined water enables control over chemical accessibility of selected hydroxyl groups through the extent of hydration, allowing regioselective reactions, a major challenge in cellulose modification. The reactions mediated by surface-confined water are sustainable and largely outperform those occurring in organic solvents in terms of efficiency and environmental compatibility. Our results demonstrate the unexploited potential of water bound to cellulosic nanostructures in surface esterifications, which can be extended to a wide range of other nanoporous polymeric structures and reactions.

5.
Carbohydr Polym ; 252: 117196, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183636

RESUMO

Cellulosic pulp has been processed into insulation paper since the earliest days of electrical engineering. This polymer synthetized by nature has proved to be competitive to man-made plastics throughout the last century and is still widely used in electrical power transformers. The high working temperatures prevailing in such apparatuses and the desired lifespans of up to 40 years shifted the thermal stability of cellulose to the center of attention of many researchers. In this literature review, a summary of theories and recent insights regarding the processes upon thermal degradation of cellulose in the temperature range relevant for electrical power transformers is given, followed by an overview of strategies to improve the thermal stability of cellulosic insulators. Special emphasis is placed on the discussion of additives and modification agents and their action modes, and on the understanding how successful upgrading of cellulose towards high thermal stability is achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA