Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Environ Res ; 209: 112748, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35101397

RESUMO

With the tremendous development of the economy and industry, the pollution of water is becoming more serious due to the excessive chemical wastes that need to remove thru reduction or oxidation reactions. Simultaneous removal of dual pollutants via photocatalytic redox reaction has been tremendously explored in the last five years due to effective decontamination of pollutants compared to a single pollutants system. In a photocatalysis mechanism, the holes in the valence band can remarkably promote the oxidation of a pollutant. At the same time, photoexcited electrons are also consumed for the reduction reaction. The synergistic between the reduction and oxidation inhibits the recombination of electron-hole pairs extending their lifetime. In this review, the binary pollutants that selectively removed via photocatalysis reduction or oxidation are classified according to heavy metal-organic pollutant (HM/OP), heavy metal-heavy metal (HM/HM) and organic-organic pollutants (OP/OP). The intrinsic between the pollutants was explained in three different mechanisms including inhibition of electron-hole recombination, ligand to metal charge transfer and electrostatic attraction. Several strategies for the enhancement of this treatment method which are designation of catalysts, pH of mixed pollutants and addition of additive were discussed. This review offers a recent perspective on the development of photocatalysis system for industrial applications.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
J Environ Manage ; 227: 34-43, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172157

RESUMO

Fibrous silica-titania (FST) catalysts were synthesized by microemulsion followed by silica seed-crystal crystallization methods under various molar ratios of toluene to water (T/W). The catalysts were characterized by XRD, UV-DRS, FESEM, TEM, AFM, N2 adsorption-desorption, FTIR, and ESR. The results revealed that altering the T/W ratio affected the growth of the silica and titania and led to different size, fiber density, silica-titania structure, and number of hydroxyl groups, as well as oxygen vacancies in the FSTs, which altered their behavior toward subsequent application. Photodegradation of ibuprofen (IBP) are in the following order: FST(6:1) (90%) > FST(5:1) (84%) > FST(7:1) (79%) > commercial TiO2 (67%). A kinetics study using Langmuir-Hinshelwood model illustrated that the photodegradation followed the pseudo-first-order and adsorption was the rate-limiting step. Optimization by response surface methodology (RSM) showed that the pH, initial concentration, and catalyst dosage were the remarkable parameters in photodegradation of IBP. The FST (6:1) maintained its photocatalytic activities for up to five cycles reaction without serious catalyst deactivation, and was also able to degrade other endocrine-disrupting chemicals, indicating its potential use for the treatment of those chemicals in wastewater.


Assuntos
Ibuprofeno , Fotólise , Catálise , Dióxido de Silício , Titânio
4.
Phys Chem Chem Phys ; 18(17): 12323-31, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27088140

RESUMO

Copper (Cu, 1-5 wt%) was loaded onto carbon nanotubes (CNTs) by a simple electrochemical method. The physicochemical properties of catalysts (Cu/CNTs) were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen (N2) adsorption-desorption, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electron spinning resonance (ESR). The results showed that the Cu was distributed well on the CNT surface by the interaction of Cu(2+) ions with -OH and -COOH groups on the CNT surface, which preferentially occurred at the defect sites along the CNT backbone. The Cu-O-C bonds formed were found to play an important role in enhancing the photoactivity of the catalysts. The highest number of Cu-O-C bonds possessed by 3 wt% Cu/CNTs demonstrated the best performance in the degradation of p-chloroaniline (96%) under UV light irradiation within 5 h of reaction at 27 °C and under neutral pH conditions. Kinetic studies showed that the degradation followed the pseudo-first order model and the surface reaction was the controlling step. It is believed that these results could contribute to the synthesis of various supported catalysts for various applications.

5.
J Colloid Interface Sci ; 386(1): 307-14, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22889626

RESUMO

In this work, mesostructured silica nanoparticles (MSN(AP)) with high adsorptivity were prepared by a modification with 3-aminopropyl triethoxysilane (APTES) as a pore expander. The performance of the MSN(AP) was tested by the adsorption of MB in a batch system under varying pH (2-11), adsorbent dosage (0.1-0.5 g L(-1)), and initial MB concentration (5-60 mg L(-1)). The best conditions were achieved at pH 7 when using 0.1 g L(-1) MSN(AP) and 60 mg L(-1)MB to give a maximum monolayer adsorption capacity of 500.1 mg g(-1) at 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Harkins-Jura isotherms and fit well to the Freundlich isotherm model. The adsorption kinetics was best described by the pseudo-second order model. The results indicate the potential for a new use of mesostructured materials as an effective adsorbent for MB.


Assuntos
Azul de Metileno/química , Nanopartículas/química , Silanos/química , Dióxido de Silício/química , Adsorção , Cinética , Propilaminas , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA