RESUMO
The current study focused on the Bortala River - a typical inland river located in an oasis of arid area in northwestern China. The sediment and soil samples were collected from the river and drainage basin. Results showed that: (1) the particle size of the sand fraction of the sediments was 78-697 µm, accounting for 78.82% of the total samples; the average concentrations of eight heavy metals fell within the concentration ranges recommended by the Secondary National Standard of China, while the maximum concentrations of Pb, Cd, and Hg exceeded these standards; (2) results from multivariate statistical analysis indicated that Cu, Ni, As, and Zn originated primarily from natural geological background, while Cd, Pb, Hg and Cr in the sediments originated from human activities; (3) results of the enrichment factor analysis and the geo-accumulation index evaluation showed that Cd, Hg, and Pb were present in the surface sediments of the river at low or partial serious pollution levels, while Zn, Cr, As, Ni, and Cu existed at zero or low pollution levels; (4) calculation of the potential ecological hazards index showed that among the eight tested heavy metals, Cd, Pb, Hg, and Cr were the main potential ecological risk factors, with relative contributions of 25.43%, 22.23%, 21.16%, and 14.87%, respectively; (5) the spatial distribution of the enrichment factors (EF(S)), the Geo-accumulation index (I(geo)), and the potential ecological risk coefficient (E(r)(i)) for eight heavy metals showed that there was a greater accumulation of heavy metals Pb, Cd, and Hg in the sediments of the central and eastern parts of the river. Results of this research can be a reference for the heavy metals pollution prevention, the harmony development of the ecology protection and the economy development of the oases of inland river basin of arid regions of China, Central Asia and also other parts of the world.
Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , China , Ecologia , Análise Multivariada , Medição de Risco/métodosRESUMO
A soil metabolism study of propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), a novel broad-spectrum herbicide, was carried out using (14)C labeled on two different rings, i.e., [pyrimidine-4,6-(14)C] ZJ0273 and [benzyl-U-(14)C] ZJ0273. Ultralow liquid scintillation counting and LC-MS/MS were used to identify the degradation intermediates and quantify their dynamics in aerobic soils. Four aromatic intermediates, 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoic acid (M1), 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzamido)benzoic acid (M2), 2-(4,6-dimethoxypyrimidin-2-yloxy)benzoic acid (M3), and 4,6-dimethoxypyrimidin-2-ol (M4), were identified and their identity was further confirmed against authentic standards. Analysis of metabolites suggested two degradation pathways: (1) Upon loss of the propyl group, M1 was produced via hydrolysis of propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate after which the C-N bond between rings A and B was cleaved by oxidation and biochemical degradation to yield M3, which was further converted into M4 and finally mineralized to CO(2); and (2) the first step was the same as in pathway 1, but M1 first underwent a carbonylation to form M2. The C-N bond between rings A and B of M2 was cleaved by hydrolysis to yield M3. Dynamic changes in the four metabolites in aerobic soils were also investigated by HPLC coupled analysis of radioactivity of isolated peaks. After a 100-day incubation, 1.7-9.7% of applied (14)C was found as M1, 0.3-1.1% as M2, 14.5-20.9% as M3, and 3.7-6.7% as M4 in the soils, and pH appeared to be the most influential soil property affecting the formation and dissipation of these metabolites.