Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Histochem Cytochem ; 58(3): 221-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19995946

RESUMO

Proteome analyses provide diagnostic information which can be essential for therapeutic predictions. The application of such techniques for analyzing paraffin-embedded tissue samples is widely hampered by the use of formalin fixation requiring antigen retrieval procedures in molecular pathology. In prior studies, the HEPES-glutamic acid buffer-mediated organic solvent protection effect (HOPE) technique of tissue fixation has been shown to provide a broad array of biochemical investigations with excellent preservation of morphological structures, DNA, RNA, and proteins, thus supporting the multimethod analysis of archived specimens. Here we show that HOPE fixation is also useful in proteomic investigations by allowing two-dimensional electrophoresis (2DE) and mass spectrometry, using lung cancer tissues. Two-dimensional gels of two-protein extraction protocols derived from HOPE-fixed material displayed characteristic spot patterns with high reproducibility. For comparison, 2DE analysis of ethanol-fixed, formalin-fixed, and frozen samples from the same tissues was performed. Western blotting confirmed immunoreactivity of 2DE-separated proteins from HOPE-fixed tissue samples. Additionally, distinct spots were excised from HOPE-derived 2D gels and successfully subjected to peptide mass fingerprinting. In conclusion, paraffin archives containing HOPE-fixed tissues are applicable to a wide spectrum of molecular investigations including common biochemical methods for proteome analyses and therefore represent a unique source for molecular investigations in the rapidly growing field of molecular pathology. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Assuntos
Adenocarcinoma/química , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma de Células Escamosas/química , Neoplasias Pulmonares/química , Proteoma/análise , Western Blotting , Criopreservação , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Etanol , Fixadores , Formaldeído , Humanos , Concentração de Íons de Hidrogênio , Inclusão em Parafina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fixação de Tecidos/métodos
3.
Diagn Pathol ; 4: 27, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19698096

RESUMO

BACKGROUND: As there is no optimal treatment of non small cell lung cancer due to its resistance to common chemotherapeutics, we investigated the effect of human placenta-conditioned medium on tumor tissue. The human placenta constitutes a mixture of maternal and fetal origin and displays a variety of immunomodulatory aspects. METHODS: Freshly resected non small cell lung cancer tissues were incubated with placenta-conditioned medium in a short-term tissue culture model and A549 cells were challenged, respectively. Term placenta was used for producing conditioned medium and HOPE-fixed stimulated tumor tissue was analyzed for expression of caspase-3 and Ki67 via immunohistochemistry. The effects of conditioned medium on squamous cell carcinoma were further compared to physiological concentrations of Carboplat/Gemzar. RESULTS: Conditioned medium caused in 2 of 3 cases elevated expression of caspase-3 and reduced expression of Ki67 in 3 out of 3 cases, while the chemotherapeutic agents caused no comparable expression of caspase-3 or reduction of Ki67. In cell culture up to 50% of karyopyknosis was investigated and even sterile-filtrated medium caused widespread reduction of Ki67 on protein level. CONCLUSION: Human placenta releases substances that mediate apoptosis and reduce proliferation in tumor tissue and cell culture. As even sterile-filtrated medium caused the mentioned effects we hypothesize one or more soluble mediators. The detailed way of promoting apoptosis and nature of these mediators need to be elucidated in further studies.

4.
Pathol Res Pract ; 205(9): 639-47, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19501987

RESUMO

Besides its main function, i.e., the binding of free hemoglobin and prevention of oxidative stress, the acute phase protein haptoglobin acts as a potent immunoreactive modulator. As part of an investigation that aimed at illuminating the role of acute phase proteins in the local defense of the lungs, this study is the first to describe the expression and synthesis of haptoglobin in human lung tissues and lung tumors. Prompted by the results obtained from a transcription array study, we analyzed 115 lung (cancer) specimens using immunohistochemistry. Thirty-seven specimens were subjected to mRNA-in situ hybridization. 40.4% of the adenocarcinomas showed distinct granular and perinuclear staining of the tumor cells. By contrast, only 4.8% of the squamous cell carcinomas showed haptoglobin within tumor cells, but 19% displayed haptoglobin expressing alveolar epithelial cells type II surrounding the tumor. One small cell lung cancer displayed haptoglobin expression. In tumor-free lungs, we located haptoglobin in alveolar macrophages, alveolar epithelial cells type II, and bronchiolar cells. In situ hybridization verified the results of immunohistochemistry. The results were further verified by RT-PCR and Western blot compared to liver tissues, which both showed comparable amounts of haptoglobin mRNA and protein in NSCLC and in liver, while tumor-free lung tissues showed lower expression. Due to the known immunomodulatory effects of haptoglobin, its broad expression and synthesis within human lung tissues strongly suggests a function as a fundamental pulmonary local defense element.


Assuntos
Haptoglobinas/biossíntese , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Neoplasias Pulmonares/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Análise Serial de Tecidos
5.
Diagn Pathol ; 4: 8, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19284609

RESUMO

Surfactant Protein-A (SP-A) is the most prominent among four proteins in the pulmonary surfactant-system. SP-A is expressed by alveolar epithelial cells type II as well as by a portion of non small cell lung carcinomas (NSCLC).The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense.By the use of cell culture or animal models the functional properties have been repeatedly shown in many aspects, often bearing surprising properties which strongly indicate the physiological importance of SP-A. To date SP-A is recognized as a molecule essential for pulmonary development, structure and function. An upcoming number of reports deals with the role of SP-A for pulmonary pathology. This article gives an overview about the state of knowledge on SP-A focused in applications for human pulmonary disorders and points out the importance for pathology-orientated research approaches using immunohistochemistry or in situ hybridization as promising methods to further elucidate the role of this molecule in adult lung diseases.

6.
Diagn Pathol ; 3: 35, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18700018

RESUMO

In several tumors the transketolase activity, controlled inter alia by enzymes of the pentose phosphate pathway which is an alternative, energy generating reaction-cascade to glycolysis, has been correlated with proliferation. The increase of thiamine-dependent transketolase enzyme reactions is induced especially through upregulated transketolase-like enzyme 1 (TKTL1)-activity; that shows TKTL1 to be a causative enzyme for tumors enhanced, anaerobic glucose degradation. We investigated TKTL1-expression in 88 human, formalin-fixed non-small cell lung cancer tissues and 24 carcinomas of the breast by immunohistochemical stainings applying a 0 to 3 staining-score system (3 = strongest expression). For means of validation we additionally stained 40 NSCLC fixed and paraffin-embedded utilizing the HOPE-technique; showing comparable results to the formalin-fixed, paraffin-embedded specimens (not shown). Potential correlations with age, sex, TNM-classification parameters and tumor grading as well as tumor transcription factor 1 (TTF1) and surfactant protein A (SPA) expression were investigated. 40.9% of the analyzed lung tumors expressed TKTL1 weakly (Score 1), 38.6% moderately (score 2) and 17.1% strongly (score 3). 3 tumors were diagnosed TKTL1-negative (3.4%; score 0). All breast cancer specimen stainings were positive and scored 1: 32%; scored 2: 36%; scored 3: 32%. Alveolar macrophages and Alveolar Epithelial Cells Type II were also found to be TKTL1-positive.None of the listed clinical parameters could be found to show a significant correlation to TKTL1 signal appearance. Although we describe the expression of TKTL1 in lung cancers, we need to state that up till now there is no scientific indication for any treatment regimens based upon these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA