Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(28): 14440-14454, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959493

RESUMO

We fabricated porous particles incorporating sugars (mannitol, sucrose, or dextran) and fenofibrate nanoparticles (FNPs) by using spray-freeze-drying (SFD). The type of sugar significantly influenced the pore architecture of the resulting SFD particles. Rapid freezing of droplets containing dextran produced ice encapsulation within a dextran matrix, forming porous dextran particles. In the presence of FNPs, the particle size (approximately 4 µm) and pore volume (0.3 cm3/g) of SFD dextran were barely affected. In contrast, SFD particles derived from mannitol and sucrose exhibited denser structures with a lower pore volume than dextran. SFD mannitol incorporating FNPs produced porous structures. FNPs containing surfactant and polymer, which reduced surface tension and increased viscosity, promoted the formation of small droplets with a polymeric structure and porous particles with a relatively sharp size distribution with a median around 5 µm. FNPs were uniformly distributed in SFD dextran, which featured large pore structures, whereas in SFD mannitol, the Raman signal of FNPs was more broadly distributed across the powder samples. Both morphologies contributed to enhancing the FNP dispersibility within a redispersed suspension of SFD particles. FNPs in SFD mannitol and dextran matrices maintained their particle size distribution from before SFD, showing no aggregation upon redispersion. Dextran formed a highly porous network irrespective of the presence of FNPs, whereas mannitol tended to alter the particle attributes upon FNP inclusion. In conclusion, SFD particles derived from dextran and mannitol might help to increase FNP dispersibility by increasing the formation of porous architectures.

2.
Expert Opin Drug Deliv ; 21(6): 945-963, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38961522

RESUMO

INTRODUCTION: Dry powder inhaler (DPI) formulations are gaining attention as universal formulations with applications in a diverse range of drug formulations. The practical application of DPIs to pulmonary drugs requires enhancing their delivery efficiency to the target sites for various treatment modalities. Previous reviews have not explored the relation between particle morphology and delivery to different pulmonary regions. This review introduces new approaches to improve targeted DPI delivery using novel particle design such as supraparticles and metal-organic frameworks based on cyclodextrin. AREAS COVERED: This review focuses on the design of DPI formulations using polysaccharides, promising excipients not yet approved by regulatory agencies. These excipients can be used to design various particle morphologies by controlling their physicochemical properties and manufacturing methods. EXPERT OPINION: Challenges associated with DPI formulations include poor access to the lungs and low delivery efficiency to target sites in the lung. The restricted applicability of typical excipients contributes to their limited use. However, new formulations based on polysaccharides are expected to establish a technological foundation for the development of DPIs capable of delivering modalities specific to different lung target sites, thereby enhancing drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Excipientes , Pulmão , Polissacarídeos , Pós , Humanos , Polissacarídeos/química , Administração por Inalação , Pulmão/metabolismo , Excipientes/química , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Composição de Medicamentos/métodos , Animais , Química Farmacêutica , Estruturas Metalorgânicas/química
3.
Small ; : e2309645, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716922

RESUMO

Nanofibrils are known to improve the cohesion of supraparticle (SP) assemblies. However, tailoring the morphology of SPs using nanofibrillar additives is not well developed. Herein, ß-lactoglobulin amyloid nanofibrils (ANFs) are investigated as means to impart morphological control over the assembly process of spray-dried SPs composed of 10-100 nm silica nanoparticles (SiNPs). Phytoglycogen (PG) and silver nanowires (AgNWs) are used to assess the influence of building block softness and aspect ratio, respectively. The results demonstrate that ANFs promote the onset of structural arrest during the particle consolidation enabling the preparation of corrugated SP morphologies. The critical ANF loading required to induce SP corrugation increases by roughly 1 vol% for every 10-nm increase in SiNP diameter, while the ensuing ANF network density decreases with SiNP volume fraction and increases with SiNP diameter. Results imply that ANF length starts to become influential when it approaches the SiNP diameter. ANFs display a reduced effectiveness in altering soft PG SP morphology compared with hard SiNPs of comparable size. In SiNP-AgNW SPs, ANFs induce a toroid-to-corrugated morphology transformation for sufficiently large SPs and small SiNPs. The results illustrate that ANFs are effective additives for the morphological engineering of spray-dried SPs important for numerous applications.

4.
J Colloid Interface Sci ; 669: 975-983, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759596

RESUMO

HYPOTHESIS: Hydroxypropyl methylcellulose phthalate (HPMCP) is an enteric polymer that has been employed in drug delivery systems to delay the release of the encapsulated active pharmaceutical ingredients through its pH-responsive solubility change. This has been recently demonstrated as an effective means for delaying the drug release from gelatin/HPMCP hydrogels at gastric pH values. However, structural characteristics of HPMCP agglomeration in gelatin/HPMCP hydrogels is not well understood thus limiting further tailoring of their material properties. EXPERIMENTS: We investigated the multiscale structure of a gelatin/HPMCP hydrogel (1:1 by weight) between pH 2 and 6 at 37 °C, i.e. above the upper critical solution transition temperature of gelatin, using small-angle X-ray scattering and contrast-variation small-angle neutron scattering to understand the pH-responsive structure of HPMCP and the cross-correlation between gelatin and HPMCP. FINDINGS: Agglomeration of HPMCP between pH 2 and 4 was evidenced by the formation of mass fractal structures, with a fractal dimension ranging from 1.5 to 2.7, comprising primary particles with a radius of gyration ranging from 70 to 140 Å. Blending with gelatin influenced the fractal structure of HPMCP and the primary particle size. Gelatin and HPMCP exhibited negative cross-correlation in all probed length scales and pH values, which was attributed to volume-exclusion interaction in a double-network-like solution architecture.


Assuntos
Gelatina , Metilcelulose , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Gelatina/química , Concentração de Íons de Hidrogênio , Metilcelulose/química , Metilcelulose/análogos & derivados , Hidrogéis/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA