Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Circ Heart Fail ; 17(6): e011107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847102

RESUMO

BACKGROUND: Clinical studies demonstrated beneficial effects of sodium-glucose-transporter 2 inhibitors on the risk of cardiovascular death in patients with heart failure with preserved ejection fraction (HFpEF). However, underlying processes for cardioprotection remain unclear. The present study focused on the impact of empagliflozin (Empa) on myocardial function in a rat model with established HFpEF and analyzed underlying molecular mechanisms. METHODS: Obese ZSF1 (Zucker fatty and spontaneously hypertensive) rats were randomized to standard care (HFpEF, n=18) or Empa (HFpEF/Empa, n=18). ZSF1 lean rats (con, n=18) served as healthy controls. Echocardiography was performed at baseline and after 4 and 8 weeks, respectively. After 8 weeks of treatment, hemodynamics were measured invasively, mitochondrial function was assessed and myocardial tissue was collected for either molecular and histological analyses or transmission electron microscopy. RESULTS: In HFpEF Empa significantly improved diastolic function (E/é: con: 17.5±2.8; HFpEF: 24.4±4.6; P<0.001 versus con; HFpEF/Empa: 19.4±3.2; P<0.001 versus HFpEF). This was accompanied by improved hemodynamics and calcium handling and by reduced inflammation, hypertrophy, and fibrosis. Proteomic analysis demonstrated major changes in proteins involved in mitochondrial oxidative phosphorylation. Cardiac mitochondrial respiration was significantly impaired in HFpEF but restored by Empa (Vmax complex IV: con: 0.18±0.07 mmol O2/s/mg; HFpEF: 0.13±0.05 mmol O2/s/mg; P<0.041 versus con; HFpEF/Empa: 0.21±0.05 mmol O2/s/mg; P=0.012 versus HFpEF) without alterations of mitochondrial content. The expression of cardiolipin, an essential stability/functionality-mediating phospholipid of the respiratory chain, was significantly decreased in HFpEF but reverted by Empa (con: 15.9±1.7 nmol/mg protein; HFpEF: 12.5±1.8 nmol/mg protein; P=0.002 versus con; HFpEF/Empa: 14.5±1.8 nmol/mg protein; P=0.03 versus HFpEF). Transmission electron microscopy revealed a reduced size of mitochondria in HFpEF, which was restored by Empa. CONCLUSIONS: The study demonstrates beneficial effects of Empa on diastolic function, hemodynamics, inflammation, and cardiac remodeling in a rat model of HFpEF. These effects were mediated by improved mitochondrial respiratory capacity due to modulated cardiolipin and improved calcium handling.


Assuntos
Compostos Benzidrílicos , Diástole , Modelos Animais de Doenças , Glucosídeos , Insuficiência Cardíaca , Mitocôndrias Cardíacas , Ratos Zucker , Inibidores do Transportador 2 de Sódio-Glicose , Volume Sistólico , Animais , Glucosídeos/farmacologia , Compostos Benzidrílicos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Diástole/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Masculino , Função Ventricular Esquerda/efeitos dos fármacos , Ratos Endogâmicos SHR , Transporte de Elétrons/efeitos dos fármacos , Ratos
2.
Cardiovasc Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776406

RESUMO

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs) such as PDE4B has recently been described to effectively prevent heart failure in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload induced heart failure in mice by acting on and restoring altered cAMP compartmentalization in distinct subcellular microdomains. METHODS AND RESULTS: Heart failure was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3 or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentalization in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human induced pluripotent stem derived cardiomyocytes with the A2254 V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS: Our data indicate that gene therapy with phosphodiesterases can prevent heart failure including associated cardiac remodeling and arrhythmias by restoring altered cAMP compartmentalization in functionally relevant subcellular microdomains.

3.
Pflugers Arch ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355819

RESUMO

Oxygen sensing is of paramount importance for maintaining cellular and systemic homeostasis. In response to diminished oxygen levels, the hypoxia-inducible factors (HIFs) orchestrate various biological processes. These pivotal transcription factors have been identified as key regulators of several biological events. Notably, extensive research from our group and others has demonstrated that HIF1α exerts an inverse regulatory effect on steroidogenesis, leading to the suppression of crucial steroidogenic enzyme expression and a subsequent decrease in steroid levels. These steroid hormones occupy pivotal roles in governing a myriad of physiological processes. Substantial or prolonged fluctuations in steroid levels carry detrimental consequences across multiple organ systems and underlie various pathological conditions, including metabolic and immune disorders. MicroRNAs serve as potent mediators of multifaceted gene regulatory mechanisms, acting as influential epigenetic regulators that modulate a broad spectrum of gene expressions. Concomitantly, phosphodiesterases (PDEs) play a crucial role in governing signal transduction. PDEs meticulously manage intracellular levels of both cAMP and cGMP, along with their respective signaling pathways and downstream targets. Intriguingly, an intricate interplay seems to exist between hypoxia signaling, microRNAs, and PDEs in the regulation of steroidogenesis. This review highlights recent advances in our understanding of the role of microRNAs during hypoxia-driven processes, including steroidogenesis, as well as the possibilities that exist in the application of HIF prolyl hydroxylase (PHD) inhibitors for the modulation of steroidogenesis.

4.
Physiol Rep ; 11(17): e15809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688424

RESUMO

OBJECTIVES: Myocardial infarction (MI) initiates a complex reparative response during which damaged cardiac muscle is replaced by connective tissue. While the initial repair is essential for survival, excessive fibrosis post-MI is a primary contributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, there are no approved drugs for the prevention or the reversal of cardiac fibrosis. Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-MI therapy, as distinct antifibrotic effects have recently been demonstrated. METHODS: At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD ligation. Mesalazine was administered orally at a dose of 100 µg/g body weight in drinking water. Fluid intake, weight development, and cardiac function were monitored for 28 days post intervention. Fibrosis parameters were assessed histologically and via qPCR. RESULTS: Compared to controls, mesalazine treatment offered no survival benefit. However, no adverse effects on heart and kidney function and weight development were observed, either. While total cardiac fibrosis remained largely unaffected by mesalazine treatment, we found a distinct reduction of perivascular fibrosis alongside reduced cardiac collagen expression. CONCLUSIONS: Our findings warrant further studies on mesalazine as a potential add-on therapy post-MI, as perivascular fibrosis development was successfully prevented.


Assuntos
Mesalamina , Infarto do Miocárdio , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mesalamina/farmacologia , Mesalamina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Coração , Miocárdio
5.
Circ Res ; 132(4): 400-414, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36715019

RESUMO

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Assuntos
Miócitos Cardíacos , Diester Fosfórico Hidrolases , Camundongos , Animais , Humanos , Diester Fosfórico Hidrolases/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Peptídeo Natriurético Tipo C/farmacologia
6.
Nat Commun ; 13(1): 7648, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496449

RESUMO

After myocardial infarction the innate immune response is pivotal in clearing of tissue debris as well as scar formation, but exaggerated cytokine and chemokine secretion with subsequent leukocyte infiltration also leads to further tissue damage. Here, we address the value of targeting a previously unknown a disintegrin and metalloprotease 10 (ADAM10)/CX3CL1 axis in the regulation of neutrophil recruitment early after MI. We show that myocardial ADAM10 is distinctly upregulated in myocardial biopsies from patients with ischemia-driven cardiomyopathy. Intriguingly, upon MI in mice, pharmacological ADAM10 inhibition as well as genetic cardiomycyte-specific ADAM10 deletion improves survival with markedly enhanced heart function and reduced scar size. Mechanistically, abolished ADAM10-mediated CX3CL1 ectodomain shedding leads to diminished IL-1ß-dependent inflammation, reduced neutrophil bone marrow egress as well as myocardial tissue infiltration. Thus, our data shows a conceptual insight into how acute MI induces chemotactic signaling via ectodomain shedding in cardiomyocytes.


Assuntos
Proteína ADAM10 , Infarto do Miocárdio , Animais , Camundongos , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Leucócitos , Proteínas de Membrana/genética , Infarto do Miocárdio/genética , Humanos
7.
Cell Signal ; 90: 110203, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34822978

RESUMO

Reversible phosphorylation of ion channels and calcium-handling proteins provides precise post-translational regulation of cardiac excitation and contractility. Serine/threonine phosphatases govern dephosphorylation of the majority of cardiac proteins. Accordingly, dysfunction of this regulation contributes to the development and progression of heart failure and atrial fibrillation. On the molecular level, these changes include alterations in the expression level and phosphorylation status of Ca2+ handling and excitation-contraction coupling proteins provoked by dysregulation of phosphatases. The serine/threonine protein phosphatase PP1 is one a major player in the regulation of cardiac excitation-contraction coupling. PP1 essentially impacts on cardiac physiology and pathophysiology via interactions with the cardiac ion channels Cav1.2, NKA, NCX and KCNQ1, sarcoplasmic reticulum-bound Ca2+ handling proteins such as RyR2, SERCA and PLB as well as the contractile proteins MLC2, TnI and MyBP-C. PP1 itself but also PP1-regulatory proteins like inhibitor-1, inhibitor-2 and heat-shock protein 20 are dysregulated in cardiac disease. Therefore, they represent interesting targets to gain more insights in heart pathophysiology and to identify new treatment strategies for patients with heart failure or atrial fibrillation. We describe the genetic and holoenzymatic structure of PP1 and review its role in the heart and cardiac disease. Finally, we highlight the importance of the PP1 regulatory proteins for disease manifestation, provide an overview of genetic models to study the role of PP1 for the development of heart failure and atrial fibrillation and discuss possibilities of pharmacological interventions.


Assuntos
Cálcio , Insuficiência Cardíaca , Cálcio/metabolismo , Coração , Insuficiência Cardíaca/metabolismo , Humanos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
8.
Circ Res ; 129(8): 804-820, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34433292
9.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062838

RESUMO

BACKGROUND: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to ß-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. METHODS: Cellular arrhythmia, ion currents, and Ca2+-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. RESULTS: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in ICaL seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in INaL and Ca2+-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. CONCLUSION: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.


Assuntos
Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/patologia , Cálcio/metabolismo , AMP Cíclico/genética , GMP Cíclico/genética , Regulação da Expressão Gênica/genética , Coração/fisiopatologia , Humanos , Isoproterenol/toxicidade , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
10.
Cells ; 10(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799608

RESUMO

Pulmonary fibrosis is the chronic-progressive replacement of healthy lung tissue by extracellular matrix, leading to the destruction of the alveolar architecture and ultimately death. Due to limited pathophysiological knowledge, causal therapies are still missing and consequently the prognosis is poor. Thus, there is an urgent clinical need for models to derive effective therapies. Polo-like kinase 2 (PLK2) is an emerging regulator of fibroblast function and fibrosis. We found a significant downregulation of PLK2 in four different entities of human pulmonary fibrosis. Therefore, we characterized the pulmonary phenotype of PLK2 knockout (KO) mice. Isolated pulmonary PLK2 KO fibroblasts displayed a pronounced myofibroblast phenotype reflected by increased expression of αSMA, reduced proliferation rates and enhanced ERK1/2 and SMAD2/3 phosphorylation. In PLK2 KO, the expression of the fibrotic cytokines osteopontin and IL18 was elevated compared to controls. Histological analysis of PLK2 KO lungs revealed early stage remodeling in terms of alveolar wall thickening, increased alveolar collagen deposition and myofibroblast foci. Our results prompt further investigation of PLK2 function in pulmonary fibrosis and suggest that the PLK2 KO model displays a genetic predisposition towards pulmonary fibrosis, which could be leveraged in future research on this topic.


Assuntos
Colágeno/metabolismo , Fibroblastos/enzimologia , Pulmão/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Fibrose Pulmonar/enzimologia , Adulto , Animais , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/patologia , Deleção de Genes , Predisposição Genética para Doença , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Pulmão/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Pessoa de Meia-Idade , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Osteopontina/genética , Osteopontina/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais
11.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050419

RESUMO

Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Transdução de Sinais , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , Fibroblastos , Humanos , Miócitos Cardíacos/metabolismo , Neurônios , Óxido Nítrico/metabolismo , Sistemas do Segundo Mensageiro
12.
Proc Natl Acad Sci U S A ; 116(44): 22282-22287, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619570

RESUMO

Sympathetic activation of ß-adrenoreceptors (ß-AR) represents a hallmark in the development of heart failure (HF). However, little is known about the underlying mechanisms of gene regulation. In human ventricular myocardium from patients with end-stage HF, we found high levels of phosphorylated histone 3 at serine-28 (H3S28p). H3S28p was increased by inhibition of the catecholamine-sensitive protein phosphatase 1 and decreased by ß-blocker pretreatment. By a series of in vitro and in vivo experiments, we show that the ß-AR downstream protein kinase CaM kinase II (CaMKII) directly binds and phosphorylates H3S28. Whereas, in CaMKII-deficient myocytes, acute catecholaminergic stimulation resulted in some degree of H3S28p, sustained catecholaminergic stimulation almost entirely failed to induce H3S28p. Genome-wide analysis of CaMKII-mediated H3S28p in response to chronic ß-AR stress by chromatin immunoprecipitation followed by massive genomic sequencing led to the identification of CaMKII-dependent H3S28p target genes. Forty percent of differentially H3S28p-enriched genomic regions were associated with differential, mostly increased expression of the nearest genes, pointing to CaMKII-dependent H3S28p as an activating histone mark. Remarkably, the adult hemoglobin genes showed an H3S28p enrichment close to their transcriptional start or end sites, which was associated with increased messenger RNA and protein expression. In summary, we demonstrate that chronic ß-AR activation leads to CaMKII-mediated H3S28p in cardiomyocytes. Thus, H3S28p-dependent changes may play an unexpected role for cardiac hemoglobin regulation in the context of sympathetic activation. These data also imply that CaMKII may be a yet unrecognized stress-responsive regulator of hematopoesis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Hemoglobinas/genética , Código das Histonas , Histonas/metabolismo , Miocárdio/metabolismo , Sistema Nervoso Simpático/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Animais , Catecolaminas/farmacologia , Células Cultivadas , Feminino , Insuficiência Cardíaca/genética , Hemoglobinas/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação , Ratos , Sistema Nervoso Simpático/efeitos dos fármacos
13.
J Vis Exp ; (149)2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31403625

RESUMO

Primary adult fibroblasts have become an important tool to study fibrosis, fibroblast interactions and inflammation in all body tissues. Since primary fibroblasts cannot divide indefinitely due to myofibroblast differentiation or senescence induction, new cultures must be established regularly. However, there are several obstacles to overcome during the processes of developing a reliable isolation protocol and primary fibroblast isolation itself: the method's degree of difficulty (especially for beginners), the risk of bacterial contamination, the required time until primary fibroblasts can be used for experiments, and subsequent cell quality and viability. In this study, a fast, reliable and easy-to-learn protocol to isolate and culture primary adult fibroblasts from mouse heart, lung, liver and kidney combining enzymatic digestion and ultrasonic agitation is provided.


Assuntos
Fibroblastos/citologia , Ultrassom/métodos , Animais , Diferenciação Celular , Células Cultivadas , Camundongos
14.
MMW Fortschr Med ; 161(5): 66, 2019 03.
Artigo em Alemão | MEDLINE | ID: mdl-30887316
15.
Int J Cardiol ; 284: 68-73, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30638748

RESUMO

BACKGROUND: Cardiac accessory ß-subunits are part of macromolecular Nav1.5 channel complexes modulating biophysical properties and contributing to arrhythmias. Recent studies demonstrated the structural interaction between ß-subunits of Na+ (Nav1.5) and K+ (Kv4.3) channels. Here, we identified the dipeptidyl peptidase-like protein-10 (DPP10), which is known to modulate Kv4.3-current kinetics, as a new regulator of Nav1.5 channels. METHODS: We assessed DPP10 expression in the healthy and diseased human heart and we studied the functional effects of DPP10 on the Na+ current in isolated rat cardiomyocytes expressing DPP10 after adenoviral gene-transfer (DPP10ad). RESULTS: DPP10 mRNA and proteins were detected in human ventricle, with higher levels in patients with heart failure. In rat cardiomyocytes, DPP10ad significantly reduced upstroke velocity of action potentials indicating reduction in Na+-current density. DPP10 significantly shifted the voltage-dependent Na+ channel activation and inactivation curve to more positive potentials, resulting in greater availability of Na+ channels for activation, along with increasing window Na+ current. In addition, time-to-peak Na+ current was reduced, whereas time course of recovery from inactivation was significantly accelerated by DPP10ad. DPP10 co-immunoprecipitated with Nav1.5 channels in human ventricles, confirming their physical interaction. CONCLUSION: We provide first evidence that DPP10 interacts with Nav1.5 channels, linking Na+- and K+-channel complexes in the heart. Our data suggest that increased ventricular DPP10 expression in heart failure might promote arrhythmias by decreasing peak Na+ current, while increasing window Na+ current and channel re-openings due to accelerated recovery from inactivation.


Assuntos
Arritmias Cardíacas/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Regulação da Expressão Gênica , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , RNA/genética , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Linhagem Celular , Cricetinae , Dipeptidil Peptidases e Tripeptidil Peptidases/biossíntese , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Miocárdio/patologia , Ratos , Ratos Wistar
16.
Sci Rep ; 8(1): 17711, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531830

RESUMO

Heart failure is the most common cause of morbidity and hospitalization in the western civilization. Protein phosphatases play a key role in the basal cardiac contractility and in the responses to ß-adrenergic stimulation with type-1 phosphatase (PP-1) being major contributor. We propose here that formation of transient disulfide bridges in PP-1α might play a leading role in oxidative stress response. First, we established an optimized workflow, the so-called "cross-over-read" search method, for the identification of disulfide-linked species using permutated databases. By applying this method, we demonstrate the formation of unexpected transient disulfides in PP-1α to shelter against over-oxidation. This protection mechanism strongly depends on the fast response in the presence of reduced glutathione. Our work points out that the dimerization of PP-1α involving Cys39 and Cys127 is presumably important for the protection of PP-1α active surface in the absence of a substrate. We finally give insight into the electron transport from the PP-1α catalytic core to the surface. Our data suggest that the formation of transient disulfides might be a general mechanism of proteins to escape from irreversible cysteine oxidation and to prevent their complete inactivation.


Assuntos
Dissulfetos/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Domínio Catalítico/fisiologia , Cisteína/metabolismo , Dimerização , Transporte de Elétrons/fisiologia , Miócitos Cardíacos/metabolismo , Oxirredução , Ratos
17.
J Evid Based Complementary Altern Med ; 22(4): 816-823, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29228816

RESUMO

Intake of oral supplements with the aim of a cutaneous antiaging effect are increasingly common. Hyaluronic acid (HA) is a promising candidate, as it is the key factor for preserving tissue hydration. In our practice study, we evaluated the effect of an oral HA preparation diluted in a cascade-fermented organic whole food concentrate supplemented with biotin, vitamin C, copper, and zinc (Regulatpro Hyaluron) on skin moisture content, elasticity, skin roughness, and wrinkle depths. Twenty female subjects with healthy skin in the age group of 45 to 60 years took the product once daily for 40 days. Different skin parameters were objectively assessed before the first intake, after 20 and after 40 days. Intake of the HA solution led to a significant increase in skin elasticity, skin hydration, and to a significant decrease in skin roughness and wrinkle depths. The supplement was well tolerated; no side effects were noted throughout the study.


Assuntos
Ácido Ascórbico , Biotina , Cobre , Ácido Hialurônico , Envelhecimento da Pele/efeitos dos fármacos , Zinco , Administração Oral , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/efeitos adversos , Biotina/administração & dosagem , Biotina/efeitos adversos , Cobre/administração & dosagem , Cobre/efeitos adversos , Suplementos Nutricionais , Combinação de Medicamentos , Feminino , Humanos , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/efeitos adversos , Pessoa de Meia-Idade , Rejuvenescimento , Resultado do Tratamento , Zinco/administração & dosagem , Zinco/efeitos adversos
18.
MMW Fortschr Med ; 159(15): 70, 2017 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-28900976
19.
MMW Fortschr Med ; 158(15): 77, 2016 09.
Artigo em Alemão | MEDLINE | ID: mdl-27596203
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA