Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38602265

RESUMO

The 2018 LUCAS (Land Use and Coverage Area frame Survey) Soil Pesticides survey provides a European Union (EU)-scale assessment of 118 pesticide residues in more than 3473 soil sites. This study responds to the policy need to develop risk-based indicators for pesticides in the environment. Two mixture risk indicators are presented for soil based, respectively, on the lowest and the median of available No Observed Effect Concentration (NOECsoil,min and NOECsoil,50) from publicly available toxicity datasets. Two further indicators were developed based on the corresponding equilibrium concentration in the aqueous phase and aquatic toxicity data, which are available as species sensitivity distributions. Pesticides were quantified in 74.5% of the sites. The mixture risk indicator based on the NOECsoil,min exceeds 1 in 14% of the sites and 0.1 in 23%. The insecticides imidacloprid and chlorpyrifos and the fungicide epoxiconazole are the largest contributors to the overall risk. At each site, one or a few substances drive mixture risk. Modes of actions most likely associated with mixture effects include modulation of acetylcholine metabolism (neonicotinoids and organophosphate substances) and sterol biosynthesis inhibition (triazole fungicides). Several pesticides driving the risk have been phased out since 2018. Following LUCAS surveys will determine the effectiveness of substance-specific risk management and the overall progress toward risk reduction targets established by EU and UN policies. Newly generated data and knowledge will stimulate needed future research on pesticides, soil health, and biodiversity protection. Integr Environ Assess Manag 2024;00:1-15. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
Glob Chang Biol ; 29(19): 5706-5719, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449367

RESUMO

Soil eukaryotes play a crucial role in maintaining ecosystem functions and services, yet the factors driving their diversity and distribution remain poorly understood. While many studies focus on some eukaryotic groups (mostly fungi), they are limited in their spatial scale. Here, we analyzed an unprecedented amount of observational data of soil eukaryomes at continental scale (787 sites across Europe) to gain further insights into the impact of a wide range of environmental conditions (climatic and edaphic) on their community composition and structure. We found that the diversity of fungi, protists, rotifers, tardigrades, nematodes, arthropods, and annelids was predominantly shaped by ecosystem type (annual and permanent croplands, managed and unmanaged grasslands, coniferous and broadleaved woodlands), and higher diversity of fungi, protists, nematodes, arthropods, and annelids was observed in croplands than in less intensively managed systems, such as coniferous and broadleaved woodlands. Also in croplands, we found more specialized eukaryotes, while the composition between croplands was more homogeneous compared to the composition of other ecosystems. The observed high proportion of overlapping taxa between ecosystems also indicates that DNA has accumulated from previous land uses, hence mimicking the land transformations occurring in Europe in the last decades. This strong ecosystem-type influence was linked to soil properties, and particularly, soil pH was driving the richness of fungi, rotifers, and annelids, while plant-available phosphorus drove the richness of protists, tardigrades, and nematodes. Furthermore, the soil organic carbon to total nitrogen ratio crucially explained the richness of fungi, protists, nematodes, and arthropods, possibly linked to decades of agricultural inputs. Our results highlighted the importance of long-term environmental variables rather than variables measured at the time of the sampling in shaping soil eukaryotic communities, which reinforces the need to include those variables in addition to ecosystem type in future monitoring programs and conservation efforts.


Assuntos
Artrópodes , Ecossistema , Animais , Solo/química , Eucariotos , Carbono , Biodiversidade , Europa (Continente) , Fungos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA