Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag Res ; 40(6): 706-720, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34405751

RESUMO

In recent years, decentralized composting appeared as one of the most appropriate treatment options for organic waste valorization in low- and middle-income countries. In Cote d'Ivoire, a pilot project has proved the feasibility of organic municipal solid waste composting for the city of Tiassalé. However, numerous issues still need to be addressed for the establishment of a sustainable decentralized composting system in this city. One of the key issues is site selection. Until now, there is no clear model for such plant site selection. In this study, multi-criteria decision analysis (MCDA) and geographical information system (GIS) approaches were combined to develop an appropriate model for selecting decentralized composting sites in the city of Tiassalé. The methodology used involved two different and complementary phases. First, MCDA and GIS techniques were used to identify the most suitable site areas. Seven criteria clustered in three main factors (environmental, social and economic), and five constraints were considered in the analysis process. Second, five sites were selected within the most suitable areas after a basic field visit and ranked using the Analytic Hierarchy Process. The results showed that the most suitable spaces for decentralized composting plant siting represent only 2.6% of the study area. The investigation yielded on the selection of the two best options for decentralized composting plant siting for the city of Tiassalé. This study proved that the combination of MCDA and GIS is a practical and efficient method to identify suitable sites for decentralized composting plants.


Assuntos
Compostagem , Eliminação de Resíduos , Côte d'Ivoire , Técnicas de Apoio para a Decisão , Sistemas de Informação Geográfica , Projetos Piloto , Eliminação de Resíduos/métodos
2.
Front Chem ; 9: 779609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869228

RESUMO

Street tree pruning residues are a widely available and currently undervalorized bioresource. Their utilization could help alleviate an increasing biomass shortage and offset costs of the pruning process for the municipalities. In this work, a holistic valorization pathway of pruning residues leading to fibers, oligosaccharides, biogas, and compost is presented. For this, representative mixtures of tree pruning materials from the most prevalent street tree genera (oak, linden, maple) found in Hamburg (Germany) were prepared by shredding and cleaning procedures. Collection of sample material was performed in summer and winter to account for seasonality. A steam-based fractionation was conducted using treatment severities ranging from log R0 = 2.5 to 4.0. At the highest severity, a fiber yield of around 66%, and liquor yield of 26-30% was determined. The fibers were evaluated with respect to their properties for paper product applications, with higher treatment severities leading to higher paper strengths. From the oligosaccharide-rich liquor, emulsions were created, which showed promising stability properties over 8 weeks of storage. The liquors and the rejects from the material preparation also displayed good potential for biomethane production. Overall, the differences between material collected in summer and winter were found to be small, indicating the possibility for a year-round utilization of pruning residues. For the presented utilization pathway, high severity treatments were the most promising, featuring a high liquor yield, good biomethane potential, and the highest paper strengths.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33023240

RESUMO

Despite many composting initiatives implemented in recent years throughout Sub-Saharan Africa, there is yet a lack of data on material flows and the potential contribution of decentralized composting towards greenhouse gas (GHG) mitigation. This study fills this gap assessing flows, emissions reduction and other environmental benefits of decentralized composting, based on a pilot composting facility implemented in the municipality of Tiassalé in Côte d'Ivoire. Primary data collected at the site were visualized with the STAN version 2.6 software developed at the Vienna University of Technology (Austria), for material flows, while carbon emissions reduction was estimated using the UNFCCC methods. Results show that in 2017, from the 59.4 metric tons of organic waste processed by this pilot station, 14.2 metric tons of mature compost was produced, which correspond to 24% of the input mass (on wet weight basis). On dry weight basis, mature compost represents 36% of the input mass. The nutrient content of the compost is in line with data from literature on sub-Saharan African compost, and heavy metal contamination fulfils both French and German compost standards. Concerning the GHG emissions reduction potential, the results show that with this composting scenario, 87% of the baseline emissions occurring in open dumping can be avoided.


Assuntos
Compostagem , Gases de Efeito Estufa , África Subsaariana , Áustria , Cidades , Côte d'Ivoire , Efeito Estufa , Solo
4.
Glob Food Sec ; 25: 100368, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32566471

RESUMO

Ensuring global food security is one of the challenges of our society. Nitrogen availability is key for food production, while contributing to different environmental impacts. This paper aims firstly to assess nitrogen flows and to highlight hotspots of inefficient use of nitrogen along the European food chain, excluding primary production. Secondly, it aims to analyse the potential for reducing the identified inefficiencies and increase nitrogen circularity. A baseline and three scenarios-reflecting waste targets reported in EU legislation and technological improvements- are analysed. Results highlighted a potential to reduce reactive nitrogen emissions up to more than 45%. However, this would imply the conversion of reactive nitrogen in molecular nitrogen, such as urea, before re-entering in the food chain. Techniques to harvest reactive nitrogen directly from urine and wastewater are considered promising to increase nitrogen use efficiency along the food chain.

5.
Waste Manag ; 85: 417-424, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803596

RESUMO

Deinking sludge (DS) is a residue from the waste paper recycling industry. It is a by-product originating from the deinking process which is designed to remove inks and other impurities from waste papers to recover usable fibers. The aim of this study was to investigate the possibility of anaerobic digestion (AD) of DS in order to produce methane (CH4) by degrading organic matter. DS differs clearly from common AD substrates due to its specific composition. The focus was laid on comparing various inocula in order to find appropriate microbial consortia. Three inocula from different origins were investigated. After sludge and inocula characterization, batch AD at a mesophilic (37 °C) condition was performed for 21 days to determine biogas and CH4 potentials as well as sludge biodegradability in comparison to cellulose. The highest average CH4 yield achieved in the 21 days of the batch experiment was 167 NmL/g organic dry matter (oDM). However, the CH4 potentials from all experiments did not have a wide range (average 160 NmL/g oDM; standard deviation ±5.0 NmL/g oDM). The highest organic matter degradation achieved was 31%. It can be stated that conventional AD inocula are usable to degrade DS, but that a significant part of the oDM was anaerobically not degradable. The overall CH4 yields were lower compared to top AD substrates such as energy crops, but in a similar range like residue-based AD substrates such as manure. Since actual DS management is cost-intensive and affecting the profitability of waste paper industry significantly, AD as a management option with an energetically valuable output is a very promising option.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Biocombustíveis , Metano
6.
Waste Manag ; 34(3): 632-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24456768

RESUMO

Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical-chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Eliminação de Resíduos , Microbiologia do Solo , Resíduos Sólidos/análise , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo
7.
Carbohydr Polym ; 100: 202-10, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24188855

RESUMO

Steam refining of non-debarked spruce forest residues was investigated as pretreatment for enzymatic hydrolysis as well as for biogas production. Pretreatment conditions were varied in the range of 190-220 °C, 5-10 min and 0-3.7% SO2 according to a statistical design. For both applications highest product yields were predicted at 220 °C and 2.4% SO2, whereas the reaction time had only a minor influence. The conformity of the model results allows the conclusion that enzymatic hydrolysis is a suitable test method to evaluate the degradability of lignocellulosic biomass in the biogas process. In control experiments under optimal conditions the results of the model were verified. The yield of total monomeric carbohydrates after enzymatic hydrolysis was equivalent to 55% of all theoretically available polysaccharides. The corresponding biogas yield from the pretreated wood amounted to 304 mL/gODM. Furthermore, furans produced under optimal process conditions showed no inhibitory effect on biogas production. It can be concluded that steam refining opens the structure of wood, thus improving the enzymatic hydrolysis of the polysaccharides to fermentable monomeric sugars and subsequently enabling a higher and faster production of biogas. Anaerobic fermentation of pretreated wood is a serious alternative to alcoholic fermentation especially when low quality wood grades and residues are used. Anaerobic digestion should be further investigated in order to diversify the biorefinery options for lignocellulosic materials.


Assuntos
Biocombustíveis , Celulase/metabolismo , Picea/química , Árvores/química , beta-Glucosidase/metabolismo , Furaldeído/análogos & derivados , Furaldeído/química , Hidrólise , Modelos Estatísticos , Dióxido de Enxofre/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA