Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Toxicol ; 6: 1382458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863790

RESUMO

In this perspective, the authors give their view on the developments and experiences on communicating on (nano)materials safety. We would like to share our experiences with the scientific community in order to make them useful for future communication activities. We present the long-term work of the science communication projects DaNa, DaNa2.0 and DaNa4.0, running from 2009 to 2023. Starting in the early 2000s with the beginnings of nanotechnology research, communication on the safety of nanomaterials with the public was still very new and faced the projects with many challenges. Today, science communication is indispensable for the dissemination of scientific findings and a fact-based approach like the DaNa "Knowledge Base Materials" creates a trustworthy dialogue with the public. This long-term project series has made a significant contribution to communication on the safety of nanomaterials, perhaps even the largest among publicly funded project series worldwide.

2.
Chem Res Toxicol ; 37(2): 292-301, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38189788

RESUMO

This study aims to enhance the understanding of the environmental risks associated with nanomaterials, particularly nanofibers. Previous research suggested that silver fibers exhibit higher toxicity (EC50/48h 1.6-8.5 µg/L) compared to spherical silver particles (EC50/48h 43 µg/L). To investigate the hypothesis that toxicity is influenced by the morphology and size of nanomaterials, various silver nanofibers with different dimensions (length and diameter) were selected. The study assessed their toxicity toward Daphnia magna using the 48 h immobilization assay. The EC50 values for the different fibers ranged from 122 to 614 µg/L. Subsequently, the study quantified the uptake and distribution of two representative nanofibers in D. magna neonates by employing digestion and imaging mass spectrometry in the form of laser-ablation-ICP-MS. A novel sample preparation method was utilized, allowing the analysis of whole, intact daphnids, which facilitated the localization of silver material and prevented artifacts. The results revealed that, despite the similar ecotoxicity of the silver fibers, the amount of silver associated with the neonates differed by a factor of 2-3. However, both types of nanofibers were primarily found in the gut of the organisms. In conclusion, the findings of this study do not support the expectation that the morphology or size of silver materials affect their toxicity to D. magna.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Daphnia magna , Prata/toxicidade , Prata/química , Daphnia , Poluentes Químicos da Água/toxicidade , Nanopartículas Metálicas/química
3.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770497

RESUMO

Polystyrene nanoparticles are the most investigated type of nanoplastics in environmental hazard studies. It remains unclear whether nanoplastic particles pose a hazard towards aquatic organisms. Thus, it was our aim to investigate whether the existing studies and data provided therein are reliable in terms of data completeness. We used the example of Daphnia spp. studies for the purpose of polystyrene nanoplastic (nanoPS) hazard evaluation. First, a set of quality criteria recently proposed for nanoplastic ecotoxicity studies was applied. These rather general criteria for all types of nanoplastics and different test organisms were then, in the second step, tailored and refined specifically for Daphnia spp. and nanoPS. Finally, a scoring system was established by setting mandatory (high importance) as well as desirable (medium importance) criteria and defining a threshold to pass the evaluation. Among the existing studies on nanoPS ecotoxicity for Daphnia spp. (n = 38), only 18% passed the evaluation for usability in hazard evaluation. The few studies that passed the evaluation did not allow for conclusions on the hazard potential of nanoPS because there was no consensus among the studies. The greatest challenge we identified is in data reporting, as only a few studies presented complete data for hazard evaluation.

4.
NanoImpact ; 29: 100441, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427812

RESUMO

Contamination of the environment with nano-and microplastic particles (NMPs) and its putative adverse effects on organisms, ecosystems, and human health is gaining increasing scientific and public attention. Various studies show that NMPs occur abundantly within the environment, leading to a high likelihood of human exposure to NMPs. Here, different exposure scenarios can occur. The most notable exposure routes of NMPs into the human body are via the airways and gastrointestinal tract (GIT) through inhalation or ingestion, but also via the skin due to the use of personal care products (PCPs) containing NMPs. Once NMPs have entered the human body, it is possible that they are translocated from the exposed organ to other body compartments. In our review article, we combine the current knowledge on the (1) exposure routes of NMPs to humans with the basic understanding of the potential (2) translocation mechanisms into human tissues and, consequently, their (3) fate within the human body. Regarding the (1) exposure routes, we reviewed the current knowledge on the occurrence of NMPs in food, beverages, personal care products and the air (focusing on indoors and workplaces) and found that the studies suggest an abundant presence of MPs within the exposure scenarios. The overall abundance of MPs in exposure matrices relevant to humans highlights the importance of understanding whether NMPs have the potential for tissue translocation. Therefore, we describe the current knowledge on the potential (2) translocation pathways of NMPs from the skin, GIT and respiratory systems to other body compartments. Here, particular attention was paid to how likely NMPs can translocate from the primary exposed organs to secondary organs due to naturally occurring defence mechanisms against tissue translocation. Based on the current understanding, we conclude that a dermal translocation of NMPs is rather unlikely. In contrast, small MPs and NPs can generally translocate from the GIT and respiratory system to other tissues. Thus, we reviewed the existing literature on the (3) fate of NMPs within the human body. Based on the current knowledge of the contamination of human exposure routes and the potential translocation mechanisms, we critically discuss the size of the detected particles reported in the fate studies. In some cases, the particles detected in human tissue samples exceed the size of a particle to overcome biological barriers allowing particle translocation into tissues. Therefore, we emphasize the importance of critically reading and discussing the presented results of NMP in human tissue samples.


Assuntos
Microplásticos , Plásticos , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Ecossistema , Trato Gastrointestinal/metabolismo , Sistema Respiratório/metabolismo
5.
J Hazard Mater ; 415: 125751, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088206

RESUMO

It is becoming increasingly important to develop assessment criteria for the quality of nanoplastics studies. This study is an attempt to establish such criteria based on those developed for engineered nanomaterials, the GUIDEnano and DaNa criteria being two representatives. These criteria were applied to studies on polystyrene nanoparticles (PS NPs), which currently represent the majority of studies on nanoplastics. We compiled a list of existing nanomaterial-related criteria that are not fully relevant to PS NPs and propose additional nanoplastic-specific criteria targeting polymer chemical composition, source, production and field collection, impurities/chemical additives, density, hydrophobicity, colour, and chemical leaching. For each criterion, scientific justification is provided. We conclude that the existing study quality assessments originally developed for nano(eco)toxicity studies can, through refinements, be applied to those dealing with nanoplastics studies, with a further outlook on microplastics. The final quality criteria catalogue presented here is intended as a starting point for further elaborations considering different purposes of an assessment.

6.
Environ Sci Technol ; 55(11): 7246-7255, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973471

RESUMO

We described in 2017 how weathering plastic litter in the marine environment fulfils two of three criteria to impose a planetary boundary threat related to "chemical pollution and the release of novel entities": (1) planetary-scale exposure, which (2) is not readily reversible. Whether marine plastics meet the third criterion, (3) eliciting a disruptive impact on vital earth system processes, was uncertain. Since then, several important discoveries have been made to motivate a re-evaluation. A key issue is if weathering macroplastics, microplastics, nanoplastics, and their leachates have an inherently higher potential to elicit adverse effects than natural particles of the same size. We summarize novel findings related to weathering plastic in the context of the planetary boundary threat criteria that demonstrate (1) increasing exposure, (2) fate processes leading to poorly reversible pollution, and (3) (eco)toxicological hazards and their thresholds. We provide evidence that the third criterion could be fulfilled for weathering plastics in sensitive environments and therefore conclude that weathering plastics pose a planetary boundary threat. We suggest future research priorities to better understand (eco)toxicological hazards modulated by increasing exposure and continuous weathering processes, to better parametrize the planetary boundary threshold for plastic pollution.


Assuntos
Plásticos , Poluentes Químicos da Água , Planeta Terra , Monitoramento Ambiental , Poluição Ambiental , Microplásticos , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
7.
Nanomaterials (Basel) ; 10(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471052

RESUMO

Engineered nanomaterials (ENMs) based on CeO2 and TiO2 differ in their effects on the unicellular green alga Raphidocelis subcapitata but these effects do not reflect the physicochemical parameters that characterize such materials in water and other test media. To determine whether interactions with algae can predict the ecotoxicity of ENMs, we studied the attachment of model compounds (three subtypes of CeO2 and five subtypes of TiO2) to algal cells by light microscopy and electron microscopy. We correlated our observations with EC50 values determined in growth inhibition assays carried out according to the Organisation for Economic Co-operation and Development (OECD) test guideline 201. Light microscopy revealed distinct patterns of ENM attachment to algal cells according to the type of compound, with stronger interactions leading to greater toxicity. This was confirmed by electron microscopy, which allowed the quantitative assessment of particle attachment. Our results indicate that algal extracellular polymeric substances play an important role in the attachment of ENMs, influencing the formation of agglomerates. The attachment parameters in short-term tests predicted the toxicity of CeO2 and TiO2 ENMs and can be considered as a valuable tool for the identification of sets of similar nanoforms as requested by the European Chemicals Agency in the context of grouping and read-across.

8.
Nanoscale ; 11(38): 17637-17654, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31539006

RESUMO

The project nanoGRAVUR (BMBF, 2015-2018) developed a framework for grouping of nanomaterials. Different groups may result for each of the three distinct perspectives of occupational, consumer and environmental safety. The properties, methods and descriptors are harmonised between the three perspectives and are based on: Tier 1 intrinsic physico-chemical properties (what they are) or GHS classification of the non-nano-form (human tox, ecotox, physical hazards); Tier 2 extrinsic physico-chemical properties, release from nano-enabled products, in vitro assays with cells (where they go; what they do); Tier 3 case-specific tests, potentially in vivo studies to substantiate the similarity within groups or application-specific exposure testing. Amongst all properties, dissolution and transformation are least modulated by different nanoforms within one substance, whereas dustiness, dispersion stability, abiotic and especially in vitro surface reactivity vary more often between different nanoforms. The methods developed or selected by nanoGRAVUR fill several gaps highlighted in the ProSafe reviews, and are useful to implement (i) the concept of nanoforms of the European Chemicals Agency (ECHA) and (ii) the concept of discrete forms of the United States Environmental Protection Agency (EPA). One cannot assess the significance of a dissimilarity, if the dynamic range of that property is unknown. Benchmark materials span dynamic ranges that enable us to establish bands, often with order-of-magnitude ranges. In 34 case studies we observed high biological similarity within each substance when we compared different (nano)forms of SiO2, BaSO4, kaolin, CeO2, ZnO, organic pigments, especially when we compared forms that are all untreated on the surface. In contrast, different Fe2O3 or TiO2 (nano)forms differ more significantly. The same nanoforms were also integrated in nano-enabled products (NEPs) for automotive coatings, clinker-reduced cements, cosmetic sunscreen, and lightweight polymers.

9.
Sci Total Environ ; 677: 156-166, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31055096

RESUMO

Groundwater is essential for the provision of drinking water in many areas around the world. The performance of the groundwater-bearing aquifer relies on the ecosystem services provided by groundwater-related organisms. Therefore, if remediation of contaminated groundwater is necessary, the remediation method has to be carefully selected to avoid risk-risk trade-offs that might impact these ecosystems. In the present study, the environmental risk of the in situ remediation agent Carbo-Iron was performed. Carbo-Iron® is a composite of zero valent nano-iron and active carbon. Existing ecotoxicity data were complemented by studies with Daphnia magna (Crustacea), Scenedesmus vacuolatus (Algae), Chironomus riparius (Insecta) and nitrifying soil microorganisms. The predicted no effect concentration of 0.1 mg/L was derived from acute and chronic ecotoxicity studies. It was compared to measured and modelled environmental concentrations of Carbo-Iron applied in a groundwater contaminated with chlorohydrocarbons in a field study and risk ratios were derived. A comprehensive assessment approach was developed further based on existing strategies and used to identify changes of the environmental risk due to the remediation of the contaminated site with Carbo-Iron. With the data used in the present study, the total environmental risk decreased by approximately 50% in the heavily contaminated zones after the application of Carbo-Iron. Thus, based on the results of the present study, the benefit of remediation with Carbo-Iron seems to outweigh its negative effects on the environment.

10.
Materials (Basel) ; 11(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111744

RESUMO

For this Editorial, we, the guest editors, performed a brief review with the aim of setting the framework for the Special issue on the "Environmental Impacts of Nanomaterials" [...].

11.
Sci Total Environ ; 635: 1170-1181, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710572

RESUMO

The usage of engineered nanomaterials (NM) offers many novel products and applications with advanced features, but at the same time raises concerns with regard to potential adverse biological effects. Upon release and emission, NM may interact with chemicals in the environment, potentially leading to a co-exposure of organisms and the occurrence of mixture effects. A prominent idea is that NM may act as carriers of chemicals, facilitating and enhancing the entry of substances into cells or organisms, subsequently leading to an increased toxicity. In the literature, the term 'Trojan-horse effect' describes this hypothesis. The relevance of this mechanism for organisms is, however, unclear as yet. Here, a review has been performed to provide a more systematic picture on existing evidence. It includes 151 experimental studies investigating the exposure of various NM and chemical mixtures in ecotoxicological in vitro and in vivo model systems. The papers retrieved comprised studies investigating (i) uptake, (ii) toxicity and (iii) investigations considering both, changes in substance uptake and toxicity upon joint exposure of a chemical with an NM. A closer inspection of the studies demonstrated that the existing evidence for interference of NM-chemical mixture exposure with uptake and toxicity points into different directions compared to the original Trojan-horse hypothesis. We could discriminate at least 7 different categories to capture the evidence ranging from no changes in uptake and toxicity to an increase in uptake and toxicity upon mixture exposure. Concluding recommendations for the consideration of relevant processes are given, including a proposal for a nomenclature to describe NM-chemical mixture interactions in consistent terms.


Assuntos
Poluentes Ambientais/toxicidade , Nanoestruturas/toxicidade , Ecotoxicologia , Monitoramento Ambiental , Poluentes Ambientais/química , Nanoestruturas/química
12.
Nanomaterials (Basel) ; 8(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596351

RESUMO

Nanotechnology is closely related to the tailored manufacturing of nanomaterials for a huge variety of applications. However, such applications with newly developed materials are also a reason for concern. The DaNa2.0 project provides information and support for these issues on the web in condensed and easy-to-understand wording. Thus, a key challenge in the field of advanced materials safety research is access to correct and reliable studies and validated results. For nanomaterials, there is currently a continuously increasing amount of publications on toxicological issues, but criteria to evaluate the quality of these studies are necessary to use them e.g., for regulatory purposes. DaNa2.0 discusses scientific results regarding 26 nanomaterials based on actual literature that has been selected after careful evaluation following a literature criteria checklist. This checklist is publicly available, along with a selection of standardized operating protocols (SOPs) established by different projects. The spectrum of information is rounded off by further articles concerning basics or crosscutting topics in nanosafety research. This article is intended to give an overview on DaNa2.0 activities to support reliable toxicity testing and science communication alike.

13.
Integr Environ Assess Manag ; 13(3): 500-504, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28440940

RESUMO

The presence of microplastic (MP) in the aquatic environment is recognized as a global-scale pollution issue. Secondary MP particles result from an ongoing fragmentation process governed by various biotic and abiotic factors. For a reliable risk assessment of these MP particles, knowledge about interactions with biota is needed. However, extensive testing with standard organisms under reproducible laboratory conditions with well-characterized MP suspensions is not available yet. As MP in the environment represents a mixture of particles differing in properties (e.g., size, color, polymer type, surface characteristics), it is likely that only specific particle fractions pose a threat towards organisms. In order to assign hazardous effects to specific particle properties, these characteristics need to be analyzed. As shown by the testing of particles (e.g. nanoparticles), characteristics other than chemical properties are important for the emergence of toxicity in organisms, and parameters such as surface area or size distribution need consideration. Therefore, the use of "well-defined" particles for ecotoxicological testing (i.e., standard particles) facilitates the establishment of causal links between physical-chemical properties of MP particles and toxic effects in organisms. However, the benefits of well-defined particles under laboratory conditions are offset by the disadvantage of the unknown comparability with MP in the environment. Therefore, weathering effects caused by biological, chemical, physical or mechanical processes have to be considered. To date, the characterization of the progression of MP weathering based on powder and suspension characterization methods is in its infancy. The aim of this commentary is to illustrate the prerequisites for testing MP in the laboratory from 3 perspectives: (i) knowledge of particle properties; (ii) behavior of MP in test setups involving ecotoxicological test organisms; and (iii) accordingly, test conditions that may need adjustment. Only under those prerequisites will reliable hazard assessment of MP be feasible. Integr Environ Assess Manag 2017;13:500-504. © 2017 SETAC.


Assuntos
Plásticos/toxicidade , Testes de Toxicidade/normas , Poluentes Químicos da Água/toxicidade , Ecotoxicologia , Monitoramento Ambiental , Laboratórios , Plásticos/análise , Testes de Toxicidade/métodos , Poluentes Químicos da Água/análise
14.
Environ Pollut ; 216: 689-699, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27357482

RESUMO

Engineered nanoparticles (NPs) have realistic potential of reaching natural waterbodies and of exerting toxicity to freshwater organisms. The toxicity may be influenced by the composition of natural waters as crucial NP properties are influenced by water constituents. To tackle this issue, a case study was set up in the framework of EU FP7 NanoValid project, performing an interlaboratory hazard evaluation of NPs in natural freshwater. Ag and CuO NPs were selected as model NPs because of their potentially high toxicity in the freshwater. Daphnia magna (OECD202) and Danio rerio embryo (OECD236) assays were used to evaluate NP toxicity in natural water, sampled from Lake Greifen and Lake Lucerne (Switzerland). Dissolution of the NPs was evaluated by ultrafiltration, ultracentrifugation and metal specific sensor bacteria. Ag NP size was stable in natural water while CuO NPs agglomerated and settled rapidly. Ag NP suspensions contained a large fraction of Ag(+) ions and CuO NP suspensions had low concentration of Cu(2+) ions. Ag NPs were very toxic (48 h EC50 1-5.5 µg Ag/L) to D. magna as well as to D. rerio embryos (96 h EC50 8.8-61 µg Ag/L) in both standard media and natural waters with results in good agreement between laboratories. CuO NP toxicity to D. magna differed significantly between the laboratories with 48 h EC50 0.9-11 mg Cu/L in standard media, 5.7-75 mg Cu/L in Lake Greifen and 5.5-26 mg Cu/L in Lake Lucerne. No toxicity of CuO NP to zebrafish embryos was detected up to 100 mg/L independent of the medium used. The results show that Ag and CuO NP toxicity may be higher in natural water than in the standard media due to differences in composition. NP environmental hazard evaluation can and should be carried out in natural water to obtain more realistic estimates on the toxicity.


Assuntos
Cobre/toxicidade , Daphnia/efeitos dos fármacos , Substâncias Perigosas/análise , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Cobre/análise , Cobre/química , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Lagos , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Prata/análise , Prata/química , Suíça , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
15.
Environ Pollut ; 213: 173-183, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26895539

RESUMO

Brine shrimp Artemia sp. has been recognised as an important ecotoxicity and nanotoxicity test model organism for salt-rich aquatic environments, but currently there is still no harmonised testing protocol which would ensure the comparable results for hazard identification. In this paper we aimed to design the harmonised protocol for nanomaterial toxicity testing using Artemia franciscana and present a case study to validate the protocol with silver nanoparticles (AgNPs). We (i) revised the existing nanotoxicity test protocols with Artemia sp. (ii) optimised certain methodological steps based on the experiments with AgNPs and potassium dichromate (K2Cr2O7) as a soluble reference chemical and (iii) tested the optimised protocol in an international inter-laboratory exercise conducted within the EU FP7 NanoValid project. The intra- and inter-laboratory reproducibility of the proposed protocol with a soluble reference chemical K2Cr2O7 was good, which confirms the suitability of this assay for conventional chemicals. However, the variability of AgNPs toxicity results was very high showing again that nanomaterials are inherently challenging for toxicity studies, especially those which toxic effect is linked to shed metal ions. Among the identified sources for this variability were: the hatching conditions, the type of test plate incubation and the illumination regime. The latter induced variations assumingly due to the changes in bioavailable silver species concentrations. Up to our knowledge this is the first inter-laboratory comparison of the Artemia sp. toxicity study involving nanomaterials. Although the inter-laboratory exercise revealed poor repeatability of AgNPs toxicity results, this study provides valuable information regarding the importance of harmonisation of all steps in the test procedure. Also, the presented AgNPs toxicity case study may serve as a platform for further validation steps with other types of NMs.


Assuntos
Artemia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Prata/química , Prata/toxicidade , Animais , Bioensaio/métodos , Reprodutibilidade dos Testes , Testes de Toxicidade/métodos
16.
Environ Int ; 87: 20-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26638016

RESUMO

Within the FP7 EU project NanoValid a consortium of six partners jointly investigated the hazard of silver nanoparticles (AgNPs) paying special attention to methodical aspects that are important for providing high-quality ecotoxicity data. Laboratories were supplied with the same original stock dispersion of AgNPs. All partners applied a harmonised procedure for storage and preparation of toxicity test suspensions. Altogether ten different toxicity assays with a range of environmentally relevant test species from different trophic levels were conducted in parallel to AgNP characterisation in the respective test media. The paper presents a comprehensive dataset of toxicity values and AgNP characteristics like hydrodynamic sizes of AgNP agglomerates and the share (%) of Ag(+)-species (the concentration of Ag(+)-species in relation to the total measured concentration of Ag). The studied AgNP preparation (20.4±6.8 nm primary size, mean total Ag concentration 41.14 mg/L, 46-68% of soluble Ag(+)-species in stock, 123.8±12.2 nm mean z-average value in dH2O) showed extreme toxicity to crustaceans Daphnia magna, algae Pseudokirchneriella subcapitata and zebrafish Danio rerio embryos (EC50<0.01 mg total Ag/L), was very toxic in the in vitro assay with rainbow trout Oncorhynchus mykiss gut cells (EC50: 0.01-1 mg total Ag/L); toxic to bacteria Vibrio fischeri, protozoa Tetrahymena thermophila (EC50: 1-10 mg total Ag/L) and harmful to marine crustaceans Artemia franciscana (EC50: 10-100 mg total Ag/L). Along with AgNPs, also the toxicity of AgNO3 was analyzed. The toxicity data revealed the same hazard ranking for AgNPs and AgNO3 (i.e. the EC50 values were in the same order of magnitude) proving the importance of soluble Ag(+)-species analysis for predicting the hazard of AgNPs. The study clearly points to the need for harmonised procedures for the characterisation of NMs. Harmonised procedures should consider: (i) measuring the AgNP properties like hydrodynamic size and metal ions species in each toxicity test medium at a range of concentrations, and (ii) including soluble metal salt control both in toxicity testing as well as in Ag(+)-species measurements. The present study is among the first nanomaterial interlaboratory comparison studies with the aim to improve the hazard identification testing protocols.


Assuntos
Substâncias Perigosas/toxicidade , Laboratórios/estatística & dados numéricos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Testes de Toxicidade/estatística & dados numéricos , Aliivibrio fischeri/efeitos dos fármacos , Animais , Artemia/efeitos dos fármacos , Linhagem Celular , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Laboratórios/normas , Oncorhynchus mykiss/crescimento & desenvolvimento , Tetrahymena thermophila/efeitos dos fármacos , Testes de Toxicidade/normas , Peixe-Zebra/crescimento & desenvolvimento
17.
Sci Total Environ ; 530-531: 198-208, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26042533

RESUMO

For degradation of halogenated chemicals in groundwater Carbo-Iron®, a composite of activated carbon and nano-sized Fe(0), was developed (Mackenzie et al., 2012). Potential effects of this nanocomposite on fish were assessed. Beyond the contaminated zone Fe(0) can be expected to have oxidized and Carbo-Iron was used in its oxidized form in ecotoxicological tests. Potential effects of Carbo Iron in zebrafish (Danio rerio) were investigated using a 48 h embryo toxicity test under static conditions, a 96 h acute test with adult fish under semi-static conditions and a 34 d fish early life stage test (FELST) in a flow-through system. Particle diameters in test suspensions were determined via dynamic light scattering (DLS) and ranged from 266 to 497 nm. Particle concentrations were measured weekly in samples from the FELST using a method based on the count rate in DLS. Additionally, uptake of particles into test organisms was investigated using microscopic methods. Furthermore, effects of Carbo-Iron on gene expression were investigated by microarray analysis in zebrafish embryos. In all tests performed, no significant lethal effects were observed. Furthermore, Carbo-Iron had no significant influence on weight and length of fish as determined in the FELST. In the embryo test and the early life stage test, growth of fungi on the chorion was observed at Carbo-Iron concentrations between 6.3 and 25mg/L. Fungal growth did not affect survival, hatching success and growth. In the embryo test, no passage of Carbo-Iron particles into the perivitelline space or the embryo was observed. In juvenile and adult fish, Carbo-Iron was detected in the gut at the end of exposure. In juvenile fish exposed to Carbo-Iron for 29 d and subsequently kept for 5d in control water, Carbo-Iron was no longer detectable in the gut. Global gene expression in zebrafish embryos was not significantly influenced by Carbo-Iron.


Assuntos
Nanocompostos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Carvão Vegetal/toxicidade , Embrião não Mamífero , Expressão Gênica/efeitos dos fármacos , Ferro/toxicidade , Testes de Toxicidade , Peixe-Zebra
18.
Anal Bioanal Chem ; 407(18): 5477-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943260

RESUMO

The extent and the mechanisms by which engineered nanoparticles (ENPs) are incorporated into biological tissues are a matter of intensive research. Therefore, laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented for the detection and visualization of engineered nanoparticles (Al2O3, Ag, and Au) in ecotoxicological test organisms (Danio rerio and Daphnia magna). While ENPs are not taken up by the zebrafish embryo but attach to its chorion, incorporation into the gut of D. magna is clearly visible by a 50-µm spot ablation of 40-µm-thick organism sections. During laser ablation of the soft organic matrix, the hard ENPs are mobilized without a significant change in their size, leading to decreasing sensitivity with increasing size of ENPs. To compensate for these effects, a matrix-matched calibration with ENPs of the same size embedded in agarose gels is proposed. Based on such a calibration, the mass of ENPs within one organism section was calculated and used to estimate the total mass of ENPs per organism. Compared to the amount determined after acid digestion of the test organisms, recoveries of 20-100% (zebrafish embryo (ZFE)) and of 4-230% (D. magna) were obtained with LODs in the low ppm range. It is likely that these differences are primarily due to an inhomogeneous particle distribution in the organisms and to shifts in the particle size distribution from the initial ENPs to those present in the organism. It appears that quantitative imaging of ENPs with LA-ICP-MS requires knowledge of the particle sizes in the biological tissue under study.


Assuntos
Daphnia/embriologia , Espectrometria de Massas/métodos , Nanopartículas/metabolismo , Peixe-Zebra/embriologia , Animais , Daphnia/metabolismo , Limite de Detecção , Nanopartículas/análise , Peixe-Zebra/metabolismo
19.
Sci Technol Adv Mater ; 16(6): 065006, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877848

RESUMO

During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure-physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.

20.
J Nanopart Res ; 16(9): 2592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25285033

RESUMO

In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size (xBET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 (xBET = 111 nm) and Alu3 (xBET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2-8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA