Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572638

RESUMO

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Assuntos
Octopodiformes , Animais , Temperatura , Mudança Climática , Aquecimento Global , Oceanos e Mares
2.
Genomics ; 116(3): 110833, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518899

RESUMO

Myo-inositol is an important compatible osmolyte in vertebrates. This osmolyte is produced by the myo-inositol biosynthesis (MIB) pathway composed of myo-inositol phosphate synthase and inositol monophosphatase. These enzymes are among the highest upregulated proteins in tissues and cell cultures from teleost fish exposed to hyperosmotic conditions indicating high importance of this pathway for tolerating this type of stress. CRISPR/Cas9 gene editing of tilapia cells produced knockout lines of MIB enzymes and control genes. Metabolic activity decreased significantly for MIB KO lines in hyperosmotic media. Trends of faster growth of the MIB knockout lines in isosmotic media and faster decline of MIB knockout lines in hyperosmotic media were also observed. These results indicate a decline in metabolic fitness but only moderate effects on cell survival when tilapia cells with disrupted MIB genes are exposed to hyperosmolality. Therefore MIB genes are required for full osmotolerance of tilapia cells.

3.
Curr Res Physiol ; 7: 100118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298473

RESUMO

All organisms encounter environmental changes that lead to physiological adjustments that could drive evolutionary adaptations. The ability to adjust performance in order to cope with environmental changes depends on the organism's physiological plasticity. These adjustments can be reflected in behavioral, physiological, and molecular changes, which interact and affect each other. Deciphering the role of molecular adjustments in physiological changes will help to understand how multiple levels of biological organization are synchronized during adaptations. Transmembrane transporters, which facilitate a cell's interaction with its surroundings, are prime targets for molecular studies of the environmental effects on an organism's physiology. Fish are subjected to environmental fluctuations and exhibit different coping mechanisms. To study the molecular adjustments of fish transporters to their external surrounding, suitable experimental systems must be established. The Mozambique tilapia (Oreochromis mossambicus) is an excellent model for environmental stress studies, due to its extreme salinity tolerance. We established a homologous cellular-based expression system and uptake assay that allowed us to study the effects of environmental conditions on transmembrane transport. We applied our expression system to investigate the effects of environmental conditions on the activity of PepT2, a transmembrane transporter critical in the absorption of dietary peptides and drugs. We created a stable, modified fish cell-line, in which we exogenously expressed the tilapia PepT2, and tested the effects of water temperature and salinity on the uptake of a fluorescent di-peptide, ß-Ala-Lys-AMCA. While temperature affected only Vmax, medium salinity had a bi-directional effect, with significantly reduced Vmax in hyposaline conditions and significantly increased Km in hypersaline conditions. These assays demonstrate the importance of suitable experimental systems for fish ecophysiology studies. Furthermore, our in-vitro results show how the effect of hypersaline conditions on the transporter activity can explain expression shifts seen in the intestine of saltwater-acclimated fish, emphasizing the importance of complimentary studies in better understanding environmental physiology. This research highlights the advantages of using homologous expression systems to study environmental effects encountered by fish, in a relevant cellular context. The presented tools and methods can be adapted to study other transporters in-vitro.

4.
Proteomics ; : e2300628, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400697

RESUMO

Botryllus schlosseri, is a model marine invertebrate for studying immunity, regeneration, and stress-induced evolution. Conditions for validating its predicted proteome were optimized using nanoElute® 2 deep-coverage LCMS, revealing up to 4930 protein groups and 20,984 unique peptides per sample. Spectral libraries were generated and filtered to remove interferences, low-quality transitions, and only retain proteins with >3 unique peptides. The resulting DIA assay library enabled label-free quantitation of 3426 protein groups represented by 22,593 unique peptides. Quantitative comparisons of single systems from a laboratory-raised with two field-collected populations revealed (1) a more unique proteome in the laboratory-raised population, and (2) proteins with high/low individual variabilities in each population. DNA repair/replication, ion transport, and intracellular signaling processes were distinct in laboratory-cultured colonies. Spliceosome and Wnt signaling proteins were the least variable (highly functionally constrained) in all populations. In conclusion, we present the first colonial tunicate's deep quantitative proteome analysis, identifying functional protein clusters associated with laboratory conditions, different habitats, and strong versus relaxed abundance constraints. These results empower research on B. schlosseri with proteomics resources and enable quantitative molecular phenotyping of changes associated with transfer from in situ to ex situ and from in vivo to in vitro culture conditions.

5.
Proteomics ; 24(1-2): e2300121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37475512

RESUMO

Salinity tolerance in fish involves a suite of physiological changes, but a cohesive theory leading to a mechanistic understanding at the organismal level is lacking. To examine the potential of adapting energy homeostasis theory in the context of salinity stress in teleost fish, Oreochromis mossambicus were acclimated to hypersalinity at multiple rates and durations to determine salinity ranges of tolerance and resistance. Over 3000 proteins were quantified simultaneously to analyze molecular phenotypes associated with hypersalinity. A species- and tissue-specific data-independent acquisition (DIA) assay library of MSMS spectra was created. Protein networks representing complex molecular phenotypes associated with salinity acclimation were generated. O. mossambicus has a wide "zone of resistance" from 75 g/kg salinity to 120 g/kg. Crossing into the zone of resistance resulted in marked phenotypic changes including blood osmolality over 400 mOsm/kg, reduced body condition, and cessation of feeding. Protein networks impacted by hypersalinity consist of electron transport chain (ETC) proteins and specific osmoregulatory proteins. Cytoskeletal, cell adhesion, and extracellular matrix proteins are enriched in networks that are sensitive to the critical salinity threshold. These network analyses identify specific proteome changes that are associated with distinct zones described by energy homeostasis theory and distinguish them from general hypersalinity-induced proteome changes.


Assuntos
Tilápia , Animais , Tilápia/metabolismo , Proteoma/metabolismo , Brânquias/metabolismo , Estresse Salino , Homeostase , Salinidade
6.
J Funct Biomater ; 14(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37888177

RESUMO

This study explored the feasibility of using fish skin bandages as a therapeutic option for third-degree skin burns. Following the California wildfires, clinical observations of animals with third-degree skin burns demonstrated increased comfort levels and reduced pain when treated with tilapia fish skin. Despite the promises of this therapy, there are few studies explaining the healing mechanisms behind the application of tilapia fish skin. In this study, mice with third-degree burns were treated with either a hydrocolloid adhesive bandage (control) (n = 16) or fish skin (n = 16) 7 days post-burn. Mice were subjected to histologic, hematologic, molecular, and gross evaluation at days 7, 16, and 28 post-burn. The fish skin offered no benefit to overall wound closure compared to hydrocolloids. Additionally, we detected no difference between fish skin and control treatments in regard to hypermetabolism or hematologic values. However, the fish skin groups exhibited 2 times more vascularization and 2 times higher expression of antimicrobial defensin peptide in comparison to controls. Proteomic analysis of the fish skin revealed the presence of antimicrobial peptides. Collectively, these data suggest that fish skin can serve as an innovative and cost-effective therapeutic alternative for burn victims to facilitate vascularization and reduce bacterial infection.

7.
J Proteome Res ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624673

RESUMO

Histone post-translational modifications (PTMs) are epigenetic marks that play a critical role in the expression and maintenance of DNA, but they remain largely uninvestigated in nonmodel organisms due to technical challenges. To begin alleviating this issue, we developed a workflow for histone PTM analysis in Mozambique tilapia (Oreochromis mossambicus), being a widespread and environmentally hardy fish, using mass spectrometry methods. By incorporating multiple protein digestion methods into the preparation of each sample, we reliably quantified 214 biologically relevant histone PTMs. All of these histone PTMs, collectively referred to as the global histone PTM landscape, were characterized in the gills, kidney, and testes of this fish. By comparing the global histone PTM landscape between the three tissues, we found that 91.59% of histone PTMs were tissue-dependent. The workflow and tools for histone PTM analysis described in this study are now publicly available and enable comprehensive investigation into the influence of environmental stress on histone PTMs in nonmodel organisms. Given the functionality and flexibility of histone PTMs, we anticipate that the study of histone PTMs in ecologically relevant contexts will provide ground-breaking insights into comparative physiology and evolution.

8.
Sci Rep ; 13(1): 12086, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495710

RESUMO

MYC transcription factors have critical roles in facilitating a variety of cellular functions that have been highly conserved among species during evolution. However, despite circumstantial evidence for an involvement of MYC in animal osmoregulation, mechanistic links between MYC function and osmoregulation are missing. Mozambique tilapia (Oreochromis mossambicus) represents an excellent model system to study these links because it is highly euryhaline and highly tolerant to osmotic (salinity) stress at both the whole organism and cellular levels of biological organization. Here, we utilize an O. mossambicus brain cell line and an optimized vector-based CRISPR/Cas9 system to functionally disrupt MYC in the tilapia genome and to establish causal links between MYC and cell functions, including cellular osmoregulation. A cell isolation and dilution strategy yielded polyclonal myca (a gene encoding MYC) knockout (ko) cell pools with low genetic variability and high gene editing efficiencies (as high as 98.2%). Subsequent isolation and dilution of cells from these pools produced a myca ko cell line harboring a 1-bp deletion that caused a frameshift mutation. This frameshift functionally inactivated the transcriptional regulatory and DNA-binding domains predicted by bioinformatics and structural analyses. Both the polyclonal and monoclonal myca ko cell lines were viable, propagated well in standard medium, and differed from wild-type cells in morphology. As such, they represent a new tool for causally linking myca to cellular osmoregulation and other cell functions.


Assuntos
Tilápia , Animais , Tilápia/metabolismo , Sistemas CRISPR-Cas/genética , Osmorregulação , Regulação da Expressão Gênica , Linhagem Celular
9.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443743

RESUMO

The cultivation of marine invertebrate cells in vitro has garnered significant attention due to the availability of diverse cell types and cellular potentialities in comparison to vertebrates and particularly in response to the demand for a multitude of applications. While cells in the colonial urochordate Botryllus schlosseri have a very high potential for omnipotent differentiation, no proliferating cell line has been established in Botryllus, with results indicating that cell divisions cease 24-72 h post initiation. This research assessed how various Botryllus blood cell types respond to in vitro conditions by utilizing five different refinements of cell culture media (TGM1-TGM5). During the initial week of culture, there was a noticeable medium-dependent increase in the proliferation and viability of distinct blood cell types. Within less than one month from initiation, we developed medium-specific primary cultures, a discovery that supports larger efforts to develop cell type-specific cultures. Specific cell types were easily distinguished and classified based on their natural fluorescence properties using confocal microscopy. These results are in agreement with recent advances in marine invertebrate cell cultures, demonstrating the significance of optimized nutrient media for cell culture development and for cell selection.


Assuntos
Urocordados , Animais , Cultura Primária de Células , Vertebrados , Técnicas de Cultura de Células
10.
Life (Basel) ; 12(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35743818

RESUMO

Transcriptional regulation is a major mechanism by which organisms integrate gene x environment interactions. It can be achieved by coordinated interplay between cis-regulatory elements (CREs) and transcription factors (TFs). Euryhaline tilapia (Oreochromis mossambicus) tolerate a wide range of salinity and thus are an appropriate model to examine transcriptional regulatory mechanisms during salinity stress in fish. Quantitative proteomics in combination with the transcription inhibitor actinomycin D revealed 19 proteins that are transcriptionally upregulated by hyperosmolality in tilapia brain (OmB) cells. We searched the extended proximal promoter up to intron1 of each corresponding gene for common motifs using motif discovery tools. The top-ranked motif identified (STREME1) represents a binding site for the Forkhead box TF L1 (FoxL1). STREME1 function during hyperosmolality was experimentally validated by choosing two of the 19 genes, chloride intracellular channel 2 (clic2) and uridine phosphorylase 1 (upp1), that are enriched in STREME1 in their extended promoters. Transcriptional induction of these genes during hyperosmolality requires STREME1, as evidenced by motif mutagenesis. We conclude that STREME1 represents a new functional CRE that contributes to gene x environment interactions during salinity stress in tilapia. Moreover, our results indicate that FoxL1 family TFs are contribute to hyperosmotic induction of genes in euryhaline fish.

11.
Mol Ecol ; 31(16): 4254-4270, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35754098

RESUMO

Inducible prey defences occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co-occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defences. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defences. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with upregulation of calcium transport proteins that could influence biomineralization. Inducible defences evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were downregulated by both oyster populations after exposure to drills, implying a trade-off between biomineralization and immune function. Following drill exposure, oysters from the population that co-occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform-specific protein expression. This trend suggests that a stronger inducible defence response evolved in oysters that co-occur with drills through modification of an existing mechanism.


Assuntos
Gastrópodes , Ostrea , Adaptação Fisiológica , Animais , Comportamento Predatório , Proteômica
12.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258607

RESUMO

Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.


Assuntos
Adaptação Fisiológica , Seleção Genética , Aclimatação , Adaptação Fisiológica/genética , Evolução Biológica , Elementos de DNA Transponíveis , Evolução Molecular , Fenótipo
13.
Genomics ; 113(5): 3235-3249, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298068

RESUMO

A data-independent acquisition (DIA) assay library for targeted quantitation of thousands of Oreochromis niloticus gill proteins using a label- and gel-free workflow was generated and used to compare protein and mRNA abundances. This approach generated complimentary rather than redundant data for 1899 unique genes in gills of tilapia acclimated to freshwater and brackish water. Functional enrichment analyses identified mitochondrial energy metabolism, serine protease and immunity-related functions, and cytoskeleton/ extracellular matrix organization as major processes controlled by salinity in O. niloticus gills. Non-linearity in salinity-dependent transcriptome versus proteome regulation was revealed for specific functional groups of genes. The relationship was more linear for other molecular functions/ cellular processes, suggesting that the salinity-dependent regulation of O. niloticus gill function relies on post-transcriptional mechanisms for some functions/ processes more than others. This integrative systems biology approach can be adopted for other tissues and organisms to study cellular dynamics for many changing ecological contexts.


Assuntos
Ciclídeos , Brânquias , Animais , Ciclídeos/genética , Células Epiteliais , Brânquias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Salinidade , Transcriptoma
14.
Mol Ecol Resour ; 21(7): 2486-2503, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101993

RESUMO

Interactions of organisms with their environment are complex and environmental regulation at different levels of biological organization is often nonlinear. Therefore, the genotype to phenotype continuum requires study at multiple levels of organization. While studies of transcriptome regulation are now common for many species, quantitative studies of environmental effects on proteomes are needed. Here we report the generation of a data-independent acquisition (DIA) assay library that enables simultaneous targeted proteomics of thousands of Oreochromis niloticus kidney proteins using a label- and gel-free workflow that is well suited for ecologically relevant field samples. We demonstrate the usefulness of this DIA assay library by discerning environmental effects on the kidney proteome of O. niloticus. Moreover, we demonstrate that the DIA assay library approach generates data that are complimentary rather than redundant to transcriptomic data. Transcript and protein abundance differences in kidneys of tilapia acclimated to freshwater and brackish water (25 g/kg) were correlated for 2114 unique genes. A high degree of non-linearity in salinity-dependent regulation of transcriptomes and proteomes was revealed suggesting that the regulation of O. niloticus renal function by environmental salinity relies heavily on post-transcriptional mechanisms. The application of functional enrichment analyses using STRING and KEGG to DIA assay data sets is demonstrated by identifying myo-inositol metabolism, antioxidant and xenobiotic functions, and signalling mechanisms as key elements controlled by salinity in tilapia kidneys. The DIA assay library resource presented here can be adopted for other tissues and other organisms to study proteome dynamics during changing ecological contexts.


Assuntos
Ciclídeos , Proteoma , Animais , Ciclídeos/genética , Biblioteca Gênica , Rim/fisiologia , Proteômica
15.
Sci Rep ; 11(1): 7854, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846462

RESUMO

CRISPR/Cas9 gene editing is effective in manipulating genetic loci in mammalian cell cultures and whole fish but efficient platforms applicable to fish cell lines are currently limited. Our initial attempts to employ this technology in fish cell lines using heterologous promoters or a ribonucleoprotein approach failed to indicate genomic alteration at targeted sites in a tilapia brain cell line (OmB). For potential use in a DNA vector approach, endogenous tilapia beta Actin (OmBAct), EF1 alpha (OmEF1a), and U6 (TU6) promoters were isolated. The strongest candidate promoter determined by EGFP reporter assay, OmEF1a, was used to drive constitutive Cas9 expression in a modified OmB cell line (Cas9-OmB1). Cas9-OmB1 cell transfection with vectors expressing gRNAs driven by the TU6 promoter achieved mutational efficiencies as high as 81% following hygromycin selection. Mutations were not detected using human and zebrafish U6 promoters demonstrating the phylogenetic proximity of U6 promoters as critical when used for gRNA expression. Sequence alteration to TU6 improved mutation rate and cloning efficiency. In conclusion, we report new tools for ectopic expression and a highly efficient, economical system for manipulation of genomic loci and evaluation of their causal relationship with adaptive cellular phenotypes by CRISPR/Cas9 gene editing in fish cells.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes/métodos , Vetores Genéticos , Tilápia/genética , Peixe-Zebra/genética , Animais , Linhagem Celular , Humanos , Regiões Promotoras Genéticas
16.
Physiol Genomics ; 52(11): 531-548, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956024

RESUMO

Using abundance measurements of 1,490 proteins from four separate populations of three-spined sticklebacks, we implemented a system-level approach to correlate proteome dynamics with environmental salinity and temperature and the fish's population and morphotype. We identified robust and accurate fingerprints that classify environmental salinity, temperature, morphotype, and the population sample origin, observing that proteins with specific functions are enriched in these fingerprints. Highly apparent functions represented in all fingerprints include ion transport, proteostasis, growth, and immunity, suggesting that these functions are most diversified in populations inhabiting different environments. Applying a differential network approach, we analyzed the network of protein interactions that differs between populations. Looking at specific population combinations of differential interaction, we identify sets of connected proteins. We find that these sets and their corresponding enriched functions reflect key processes that have diverged between the four populations. Moreover, the extent of divergence, i.e., the number of enriched functions that differ between populations, is highest when all three environmental parameters are different between two populations. Key nodes in the differential interaction network signify functions that are also inherent in the fingerprints, most prominently proteostasis-related functions. However, the differential interaction network also reveals additional functions that have diverged between populations, notably cytoskeletal organization and morphogenesis. The strength of these analyses is that the results are purely data driven. With such an unbiased approach applied on a large proteomic data set, we find the strongest signals given by the data, making it possible to develop more discriminatory and complex biomarkers for specific contexts of interest.


Assuntos
Adaptação Fisiológica/genética , Proteínas/metabolismo , Proteoma , Smegmamorpha/metabolismo , Animais , Brânquias/metabolismo , Fenótipo , Mapas de Interação de Proteínas , Proteômica/métodos , Salinidade , Água do Mar/química , Smegmamorpha/genética , Temperatura
17.
Sci Rep ; 10(1): 12103, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694739

RESUMO

Euryhaline tilapia (Oreochromis mossambicus) are fish that tolerate a wide salinity range from fresh water to > 3× seawater. Even though the physiological effector mechanisms of osmoregulation that maintain plasma homeostasis in fresh water and seawater fish are well known, the corresponding molecular mechanisms that control switching between hyper- (fresh water) and hypo-osmoregulation (seawater) remain mostly elusive. In this study we show that hyperosmotic induction of glutamine synthetase represents a prominent part of this switch. Proteomics analysis of the O. mossambicus OmB cell line revealed that glutamine synthetase is transcriptionally regulated by hyperosmolality. Therefore, the 5' regulatory sequence of O. mossambicus glutamine synthetase was investigated. Using an enhancer trapping assay, we discovered a novel osmosensitive mechanism by which intron 1 positively mediates glutamine synthetase transcription. Intron 1 includes a single, functional copy of an osmoresponsive element, osmolality/salinity-responsive enhancer 1 (OSRE1). Unlike for conventional enhancers, the hyperosmotic induction of glutamine synthetase by intron 1 is position dependent. But irrespective of intron 1 position, OSRE1 deletion from intron 1 abolishes hyperosmotic enhancer activity. These findings indicate that proper intron 1 positioning and the presence of an OSRE1 in intron 1 are required for precise enhancement of hyperosmotic glutamine synthetase expression.


Assuntos
Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Elementos Reguladores de Transcrição , Tilápia/fisiologia , Animais , Linhagem Celular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação Enzimológica da Expressão Gênica , Osmorregulação , Proteômica , Salinidade , Estresse Fisiológico , Tilápia/genética
19.
Integr Comp Biol ; 60(2): 304-317, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458981

RESUMO

The gill proteome of threespine sticklebacks (Gasterosteus aculeatus) differs greatly in populations that inhabit diverse environments characterized by different temperature, salinity, food availability, parasites, and other parameters. To assess the contribution of a specific environmental parameter to such differences it is necessary to isolate its effects from those of other parameters. In this study the effect of environmental salinity on the gill proteome of G. aculeatus was isolated in controlled mesocosm experiments. Salinity-dependent changes in the gill proteome were analyzed by Liquid chromatography/Tandem mass spectrometry data-independent acquisition (DIA) and Skyline. Relative abundances of 1691 proteins representing the molecular phenotype of stickleback gills were quantified using previously developed MSMS spectral and assay libraries in combination with DIA quantitative proteomics. Non-directional stress responses were distinguished from osmoregulatory protein abundance changes by their consistent occurrence during both hypo- and hyper-osmotic salinity stress in six separate mesocosm experiments. If the abundance of a protein was consistently regulated in opposite directions by hyper- versus hypo-osmotic salinity stress, then it was considered an osmoregulatory protein. In contrast, if protein abundance was consistently increased irrespective of whether salinity was increased or decreased, then it was considered a non-directional response protein. KEGG pathway analysis revealed that the salivary secretion, inositol phosphate metabolism, valine, leucine, and isoleucine degradation, citrate cycle, oxidative phosphorylation, and corresponding endocrine and extracellular signaling pathways contain most of the osmoregulatory gill proteins whose abundance is directly proportional to environmental salinity. Most proteins that were inversely correlated with salinity map to KEGG pathways that represent proteostasis, immunity, and related intracellular signaling processes. Non-directional stress response proteins represent fatty and amino acid degradation, purine metabolism, focal adhesion, mRNA surveillance, phagosome, endocytosis, and associated intracellular signaling KEGG pathways. These results demonstrate that G. aculeatus responds to salinity changes by adjusting osmoregulatory mechanisms that are distinct from transient non-directional stress responses to control compatible osmolyte synthesis, transepithelial ion transport, and oxidative energy metabolism. Furthermore, this study establishes salinity as a key factor for causing the regulation of numerous proteins and KEGG pathways with established functions in proteostasis, immunity, and tissue remodeling. We conclude that the corresponding osmoregulatory gill proteins and KEGG pathways represent molecular phenotypes that promote transepithelial ion transport, cellular osmoregulation, and gill epithelial remodeling to adjust gill function to environmental salinity.


Assuntos
Proteínas de Peixes/fisiologia , Brânquias/fisiologia , Osmorregulação , Proteoma/fisiologia , Smegmamorpha/fisiologia , Animais , Proteômica
20.
J Exp Zool A Ecol Integr Physiol ; 333(6): 421-435, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32048473

RESUMO

Salinity stress occurs when salt concentration in the environment changes rapidly, for example because of tidal water flow, rainstorms, drought, or evaporation from small bodies of water. However, gradual changes in salt concentration can also cause osmotic stress in aquatic habitats if levels breach thresholds that reduce the fitness of resident organisms. The latter scenario is exemplified by climate change driven salinization of estuaries and by dilution of ocean surface salinity through changes in the water cycle. In this review, we discuss how fish employ the evolutionarily conserved cellular stress response (CSR) to cope with these different forms of salinity stress. Macromolecular damage is identified as the cause of impaired physiological performance during salinity stress and serves as the signal for inducing a CSR. Basic aspects of the CSR have been observed in fish exposed to salinity stress, including repair and protection of cellular macromolecules, reallocation of energy, cell cycle arrest, and in severe cases, programmed cell death. Osmosensing and signal transduction events that regulate these aspects of the CSR provide a link between environmental salinity and adaptive physiological change required for survival. The CSR has evolved to broaden the range of salinities tolerated by certain euryhaline fish species, but is constrained in stenohaline species that are sensitive to changes in environmental salinity. Knowledge of how the CSR diverges between euryhaline and stenohaline fish enables understanding of physiological mechanisms that underlie salt tolerance and facilitates predictions as to the relative vulnerabilities of different fish species to a rapidly changing hydrosphere.


Assuntos
Peixes/fisiologia , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Água/química , Animais , Cloreto de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA